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Two-level atoms coupled with single-mode cavity photons are predicted to ex-
hibit a quantum phase transition when the coupling strength exceeds a critical
value, entering a phase in which atomic polarization and photonic field are
finite even at zero temperature and without external driving. However, this
phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-
go theorem due to the existence of the diamagnetic term in the Hamiltonian.
Here, we present spectroscopic evidence for a magnonic SRPT in ErFeO;,
where the role of the photonic mode (two-level atoms) in the photonic SRPT
is played by an Fe*™ magnon mode (Er*" spins). The absence of the diamag-
netic term in the Fe3™—Er®" exchange coupling ensures that the no-go theorem
does not apply. Terahertz and gigahertz magnetospectroscopy experiments re-
vealed the signatures of the SRPT — a kink and a softening, respectively, of two

spin—magnon hybridized modes at the critical point.

Main text

Introduction

An ensemble of two-level atoms can exhibit coherence through cooperative interaction with
a single-mode quantized radiation field. Such cooperative optical processes have been exten-
sively studied since the pioneering work of Dicke in the context of superradiance (/) and have
recently attracted much-renewed interest in cavity quantum electrodynamics (QED) (2—4), con-
densed matter physics (5—7), and quantum information science (8). In contrast to superradiance

phenomena, recent cavity QED studies of materials have focused on thermal equilibrium mod-

ified by cavity-enhanced vacuum electromagnetic fields; see Fig. 1A (top panel).

A profound consequence of the Dicke model is a quantum phase transition, the superradiant

phase transition (SRPT) (9), where when the strength of the cooperative light-mater coupling
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(g) exceeds a critical value, a static coherent electric or magnetic field and a finite atomic po-
larization appearing spontaneously and simultaneously. Realization of the SRPT has been of
much interest, but its occurrence in thermal equilibrium has been a subject of debate (10, 117). A
no-go theorem exists (/2), while various methods have been proposed to circumvent the no-go
theorem (/3—18). At the core of the no-go theorem is the diamagnetic term (also known as the
A? term) that inevitably appears in the minimal-coupling Hamiltonian describing the electric-
dipole light—matter interaction; this term adds positive energy to the system, causing the ground
state to be robust against the SRPT (/2, 19). Figure 1B plots the frequencies of the upper and
lower polaritons (w, and w_, respectively, normalized by wy) as a function of g/wy, where wy
is the cavity frequency, in the presence (dashed line) and absence (solid line) of the A? term at
zero detuning, wy = w,, where w, is the atomic frequency. The SRPT occurs when there is no
A? term, resulting in a complete frequency softening (a kink) of w_ (w. ) at the phase boundary.
A recent theoretical study has suggested that a magnonic version of the SRPT can occur in
ErFeOs via ultrastrong magnon—spin coupling because the nature of the coupling is an exchange
interaction for which there is no A? term (/8). Further, terahertz (THz) magnetospectroscopy
experiments on a crystal of ErFeO3 have revealed ultrastrong coupling between a magnon mode
of ordered Fe®*" spins and paramagnetic Er** spins (20). This system can be modeled by the
Dicke Hamiltonian, where the Fe** magnon mode (the Er3" spins) plays the role of the single
cavity mode (the two-level atoms) of the Dicke model; see Fig. 1A (bottom panel). The g
of the Fe*™—Er*t coupling exhibited Dicke cooperativity (1, 5), i.e., ¢ & v/N, where N is
the Er®" spin density (20). More recently, a short-range atom—atom interaction (Er*T—Er3*™
exchange interaction) has been incorporated for the simulation of an extended Dicke model (217).
However, spectroscopic signatures of the SRPT —i.e., a polariton frequency softening down to
zero and a concomitant change in the other polariton branch — have not been achieved to date.

Here we report an unambiguous experimental demonstration of the magnonic SRPT in



ErFeOj3 through magnetospectroscopy measurements in the THz and gigahertz (GHz) frequency
ranges at low temperatures. We observed that, at the phase boundary between the normal
(N) phase and the superradiant (SR) phase, the frequency of a branch of the Er®* electron
paramagnetic resonance (EPR) approaches zero while the frequency of a zone-boundary Fe3*
magnon displays a kink. We developed an extended Dicke model, incorporating the single-
ion anisotropy energy of Er®* spins, which accurately reproduces the experimentally observed
mode frequencies. The establishment of the magnonic SR phase will enable further exper-
imental explorations of the nonintuitive vacuum-induced ground states predicted for the SR

phase (22, 23).

Expected spectroscopic signatures of the superradiant phase transition

The standard Dicke model reads,

N e N N 2 ) oA
H/h:woaTa+wa (Sz—i—E) +\/—9N(QT—I—G)SQC, (D)

where a' (@) is a photon creation (annihilation) operator, Si is a spin operator in the 7 direction,
and N is the number of two-level atoms (Er®* spins). This model predicts that the SR phase

exists at zero temperature when the inequality

v/ Walo
2

g> (2)

is satisfied. In the case of zero detuning (w, = wy), this condition reduces to g > wy/2, i.e.,
ne = 0.5 is the critical value for the normalized coupling strength 77 = g/wy. One can imagine
the effect of g is largest when the light and atom degrees of freedom are on-resonant at zero
detuning. Therefore, the standard strategy for realizing the SRPT is to maximize g to reach
1. = 0.5 for a fixed wy while maintaining zero detuning (w, = wy); see Fig. 1B. However, even
when 7 < 0.5, the SRPT can occur if one can reduce w, to satisfy Eq.[2] for fixed ¢ and wy.

For example, when p = 0.1 (Fig. 1C), the inequality in Eq.becomes v = w,/wy < 0.04; that
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is, the SRPT occurs as a function of v when it is decreased to the critical value v, = 0.04. In
general, when n < 0.5 (n > 0.5), the SRPT occurs v, < 1 (v, > 1), i.e., on the left (right) side
of the zero-detuning point when w, is varied for fixed g and wy (24); see Fig. S4B.

This nonstandard strategy aptly works for realizing a magnonic SRPT in ErFeOs. The
Fe3T—Er*" coupling strength g and the Fe*" magnon frequency wy are nearly independent of
the applied magnetic field, H, and their ratio is n < 1, while the Er** EPR frequency w,
strongly depends on the applied magnetic field, via the Zeeman effect. Therefore, applying a
magnetic field can tune . With realistic values of g and wy for ErFeOs (18, 21, 25), the SRPT is
expected to occur at a critical magnetic field, H., when the temperature, 7', is sufficiently low
(<4 K). Notably, the critical temperature, 7., is maximum when w, = 0, i.e., when H = 0.
As H increases, 1, decreases, and hence, the SR phase is transformed into the N phase at
H = H.(T') when H is varied at a constant temperature; as 7" is decreased, H. monotonically
increases from zero to a maximum value at 7" = 0, which is a quantum critical point. Figure 1C
shows the frequencies of the two polariton branches, w., normalized by wy, as a function of
v calculated using the Dicke model in the thermodynamic limit (N — ©0) in the absence of
the A term; we assumed 1 = 0.1, which is a typical value found in the ultrastrong coupling

regime (3,4, 6).

Magnetic structure of ErFeQ;

When 4 K < T < 87 K, Fe3* spins are antiferromagnetically ordered along the ¢ axis with
a canting toward the a axis by a small angle # (I's in Bertaut’s notation) induced by the
Dzyaloshinskii-Moriya (DM) interaction, which produces a weak ferromagnetic moment along
the a axis (26). As T decreases from 4 K, the Néel vector of Fe?>* continuously rotates toward
the b axis (27), and paramagnetic Er*™ spins develop C-type antiferromagnetic order along the

c axis (28). Figure 2A shows the orthorhombic perovskite structure of ErFeOg that consists of



two Fe?* (SA/B) and two Er** (s4/B) sublattices, described by the space group DiS-Pbnm
below 4 K (I'12). This phase transition (I'y; — I'y5) corresponds to the N — SR phase transition
—1.e., the appearance of the static coherent electric or magnetic field and atomic polarizations in
the context of a photonic SRPT (/8). The two order parameters in the magnonic SRPT can be
defined as (S/®) and (s2 — s7) (21). Most importantly, the application of a magnetic field can

induce a ['1o — Iy transition (29, 30), which we utilize in demonstrating the magnonic SRPT.

THz and GHz magnetospectroscopy studies of ErFeO;

We performed transmission magnetospectroscopy experiments on single crystals of ErFeOgs in
the Voigt geometry in the THz and GHz photon frequency ranges to monitor the magnetic field
evolution of the upper polariton (w..) and lower polariton (w_) modes of this Fe**—Er* hybrid
system in Fig. 1C. The application of a static magnetic field, Hpc, along the a axis continuously
tuned the ‘bare’ Er** EPR frequency w, via the Zeeman effect, whereas the ‘bare’ Fe3™ magnon
mode frequency wy was nearly independent of Hpc. Here, the ‘bare’ frequencies refer to the
frequencies of the Fe3* and Er®* modes when they are uncoupled. The magnetic field moved
the system out of the SR phase into the N phase at a critical field of pgHpc = 1.8 TatlT = 2K
(where i is the vacuum permeability).

In the THz frequency range (frequencies above 0.25 THz), we used THz time-domain mag-
netospectroscopy (THz-TDMS) (37) to monitor the w, mode. On the other hand, to monitor the
w_ mode in the GHz range (24), we used a set of continuous-wave devices (Virginia Diodes,
Inc.) producing single-frequency microwave radiation at frequencies below 172 GHz. From
33 GHz to 71 GHz, we recorded the intensiy of radiation transmitted through the sample as a
function of magnetic field, which exhibited decreases at magnetic resonances. From 74 GHz to
172 GHz, we monitored the sample temperature, which increased at resonance magnetic fields

due to resonant absorption of microwave radiation. Through these methods, we were able to



locate the resonance frequencies of both the w, and w_ modes as a function of magnetic field.

In the THz-TDMS experiments, the magnetic field component of the incident THz wave
was set to be parallel to the a axis to access the quasi-antiferromagnetic (QAFM) magnon mode
of Fe?* (25) while a static magnetic field was applied along the a axis; see the black box in
Fig. 2B. The THz magnetic field parallel to the net magnetization direction triggered the out-
of-phase spin precession in SA/B through the transient Zeeman torque, as shown in Fig. 2B. A
b-cut sample made this configuration possible in the Voigt geometry. In this configuration, we
found a pronounced absorption peak at 0.8 THz, which we interpret as the w, mode. The top
panel of Fig. 2C shows the magnetic field dependence of this mode in an absorption coefficient
(a) plot (24). The data signals a clear phase transition at 1.8 T as a kink in the field evolution
of its frequency. Below 1.8 T, the feature rapidly increased with Hpc, whereas above 1.8 T, it
slowly decreased with increasing Hpc. This behavior is consistent with what is shown for the
w4 mode in Fig. 1C.

The bottom three panels of Fig. 2C display spectra taken in the GHz range, showing a dra-
matic softening behavior of the w_ mode. At 0 T, a broad feature is seen at around 150 GHz,
but it rapidly sharpens and red-shifts as the applied magnetic field is increased. The frequency
of this mode eventually becomes lower than the lower bound of our frequency range but quickly
reappears with increasing field, leaving a field gap of 0.2 T between the two peaks at 33 GHz.
The middle of these peaks is located at 1.8 T, which agrees with the kink position of the w, mode
in the top panel. This softening behavior is consistent with what is shown for the w_ mode in
Fig. 1C. A further increase of the field reveals a Zeeman-type response of the Er®* spins, signi-
fying the absence of antiferromagnetic order in the N phase. The w_ mode eventually appears
in THz absorption spectra in the top panel above 5.5 T, which confirms the consistency of our
two different types of measurements. The less bright line that appears slightly above the w_

does not play a significant role in the SRPT (24); see Fig. S6.



Phase diagram and polariton frequencies

We model our experimental results with a spin Hamiltonian that has been widely studied for
rare-earth orthoferrites (18, 32, 33), augmenting it with a term accounting for the anisotropy of
the Er*™ spins and mapping it to an extended Dicke model; details of the mapping appear in the
next section. Figure 3A displays a mean-field 7'- H phase diagram of the spin Hamiltonian, for
0<T<6Kand0 < ppH < 3T. This phase diagram, consistent with Ref. (29), shows the
SR—phase boundary obtained by using (52 — sB) of Er** spins as the order parameter. One can
also use (S;'") of Fe*" to construct the same phase boundary (24), since the two subsystems
simultaneously order (Fig. S7). The spin configurations are shown as an inset in Fig. 3A.

Above 4 K at 0 T, the system hosts antiferromagnetically ordered Fe3* spins while Er®*
spins are paramagnetic (Fig.2A). As we cool down the system, the b axis component of Fe3*
spins becomes finite through the rotation of the Néel vector around the a axis. This rotation be-
havior has been evidenced by nuclear magnetic resonance experiments (27). At the same time,
Er** spins antiferromagnetically order along the ¢ axis (Fig.2A). When we apply an external
magnetic field along the a axis stronger than H., we break the antiferromagnetic ordering of
Er?* spins and restore the Fe3* Néel vector along the c axis. These occur simultaneously due to
the Fe3T—Er3* antisymmetric exchange interaction that couples spins and magnons in the Dicke
model as we discuss in the following section.

Figure 3B shows the frequencies of both polariton branches, calculated based on the spin
Hamiltonian, below (2 K, left panel) and above (10 K, right panel) the critical temperature as a
function of H, together with experimental results from Fig. 2C. At 2 K, good agreement was
obtained by fitting Dicke model parameters (24). In particular, our calculations reproduce the
observed w, kink and w_ softening. At 10 K, we calculated the frequencies with the parameters
obtained at 2 K. The two modes at 10 K do not display any critical behavior and are much less

hybridized. Therefore, the two branches are essentially the gQAFM mode of Fe3* spins (~ wy)
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and the EPR of Er** spins (~ w,), respectively.

Note that the zero-field value of the Er*" resonance is finite even at 10K (34). This zero-
field splitting is a result of the lifted degeneracy of the Er** ground state doublets (20, 34) due to
the symmetric Fe3*—Er®* exchange interaction that exerts an internal effective magnetic field on
Er3* spins. Our fitting extracts the bare wy and w, appearing in the extended Dicke model (24),
and using these values we indicate the value of v = w,/wy in the top z axis in the left panel,

finding the critical ratio v, ~ 0.11.

Mean field theory and extended Dicke model

The system is described by a spin Hamiltonian on a bipartite lattice with a unit cell consisting
of two Er** and two Fe3" spins (18, 20). Nearest-neighboring spins interact via direct magnetic
exchange. Owing to strong spin-orbit coupling in Fe**, nearest neighbors of Fe*-spins also
have anti-symmetric Dzyaloshinskii-Moriya (DM) interactions between them. Both the Fe"
and Er®" are magnetically anisotropic, preferring the zz-plane in our notation. Although the
physical system has four Fe*" ions in a unit cell, the effective two-sublattice model is able to
reproduce the resonance frequencies accurately since the Fe3™-anisotropic energies are much
smaller than the anti-symmetric (DM) interaction energy (26, 32). The Hamiltonian describing
these effects is

H = HFe + %Er + HEr-Fm (3)

where

N
Hre =) Z pBgES: By + Jre Y SP-SP

s=A,B i=1 (3,i')
- Dlge ;;) (Sz/,\zsg,z - S?,zSiA,x) (4)

No
= 3TN (ARS8 + AR(55)?)

s=AB i=1



N,
Moo= 35 pgtis, B 4 e Y sl s

s=A,B =1 <i,i/>
No 5
= D0 D (AR + AR
s=AB i=1
and
No
Herre = Z Z |:J5,f : Sf/ -+ Ds’s/ . (5f X Sf/)] ) (6)
i=1 s,s’/=AB

The Sf‘/ B and 5?/ B correspond to Fe?™ (S = 5 /2) and Er*t (s =1 /2) spin operators at the
i"-site in the A/B sublattice; > (i,i7y Tepresents a sum over the appropriate nearest neighbors;
Ny is the number of unit cells; up is the Bohr magneton; Jg,, Jge, and J are the direct exchange
coupling strengths between Er*™—Er®*, Fe3™—Fe3™ and Fe3™—Er®* spins, respectively; Dy, and
D** are the DM-coupling strength between Fe?t—Fe®* and Fe®*-Er’* spins, respectively;
A7 and AY/* are the anisotropy strengths of Fe’™ and Er*" spins respectively along the z/z
axes; and g, p, are the x component of the Landé g-factor tensors for Fe** and Er**, which are
assumed to be diagonal.

We included Er®"-anisotropy terms in Eq. |5| which were neglected in previous studies (I8,
20). However, magnetization measurements (35, 36) suggest that Er*"-anisotropy is strong in
this material. The inclusion of the terms is further justified by its large value compared to the
exchange interaction between the Er®'-spins, i.e., Agr/ * > Jg. Including the Er*"-anisotropy
terms in the Hamiltonian produces a noticeably improved fit to the experimental data (Figs. 3B
and S5). This is further elaborated in the Supplementary Material (24).

We calculated the w. by a combination of mean-field theory and linearization of the Heisen-
berg equations of motion of the spin operators, as in Ref. (/8). Assuming that the average values
of the spin operators, S8 and s*/B, are the same in all the unit cells, we self-consistently solved
SAB

A/B

for the twelve mean-fields, and s** in thermal equilibrium. The resonance frequency

were obtained by linearizing the Heisenberg equations of motion of these twelve spin operators
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around the mean-field values and solving the resulting linear differential equations (24).

The Er** parameters in Eq. |5, namely Jg,, g%, AL, AZ,, as well as A%, and g, in Eq. 4} are
used as fitting parameters to the spectroscopic data at 7' = 2 K (Fig. 3B). However, the same
set of parameters reasonably reproduces the spectroscopic data at 10 K (Fig. S5). The rest of the
parameters in Eqgs. [4]and [6] are the same as those used in Ref. (/8). Details of the fitting process
and the parameter values are provided in (24).

The spin Hamiltonian of ErFeOj3 can be accurately mapped to an extended Dicke Hamilto-
nian, which provides a natural explanation of the superradiant phase transition. Using spin-wave
theory, the Fe** spins SA'B are re-written in terms of a set of magnonic creation and annihila-
tion operators (aqem, dqarms aLM, aLM ) (18, 26), where the "qFM" ("qAFM") corresponds to the
k = 0 (k = m) quasi-momentum modes. Following Ref. (/8), we also make a collective spin

approximation for the Er*-spins,

1
A/B A/B
5. ¢ = o E 5, (7)
b NO Py 9
I asB
= —3 8
NO 5 9 ( )

where § = x,y, z and the last line defines two sets of spin operators Egﬂ =5 (5‘& =+ 55371-).
The magnon representation of Fe3" is justified owing to the strong exchange interaction Jg, =
4.96 meV, making it highly dispersive, while the Ert exchange interaction, Jg, = 0.0132 meV,
is more than two orders magnitude smaller. Hence the Er®"-spins are well-described by the

collective spin approximation, and they couple only to the gAFM and qFM iron modes. The
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explicit form of the extended Dicke Hamiltonian is

25rJEr
Hpicke = Z hwmaham + E,XF + E,SF + pppogh, HOOS) + = sA . 3B

No
m:{qFM,qAFM}

Aér S gx Zg
=20 D0 R i (ohan t aoar) B+ (e o) B

(=x,z s=A,B
! _ 7; z _ Z/
+ T (oo ) %5+ 7= (ahar = ) 72+ 2= (el + o) B2

9)
Since the Er*" decouple from the magnon modes for k # 0, 7, we omit these in Eq. @ The Sup-
plementary Materials shows the derivation of Eq. [0|from Egs. eqgs. (3) to () and the equations
for the Dicke model parameters (wWqpm, Waarms Ly Ey, Gus Gy» 92, Gy» and g.1) (24).

Similar to Ref. (/8), the temperature dependence is incorporated through the dilution factor

|E, + pin o9, HOC|
g T

x = tanh , (10)

where kg is the Boltzmann constant. The only difference between Eq.[9)and the extended Dicke

model of Ref. (18) is the Er*"-anisotropy terms.

Discussion

We provided spectroscopic evidence that the 'y — I'y phase transition in ErFeOs; can be
understood as the SR—N transition in central to quantum optics (/8). This phase transition
can also be regarded as the magnetic transition of the Jahn-Teller type (37, 38). What makes
our mode softening distinct from others found in various solids, is the concomitant kink and
applicability of the Dicke model. While our softening resembles a softening at a spin-flop
transition, as found in MnF; (easy-axis antiferromagnet) (39), the softening occurs without any
concomitant kink since only one magnetic sub-lattice exists in the material. Furthermore, this
softening occurs only when the external magnetic field is applied parallel to the Neel vector
(easy-axis), in contrast to our work where the field is applied perpendicular to the Neel vector

(hard-axis). In conclusion, our softening does not stem from a simple spin-flop transition.
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Our work is readily applied to other solids, such as other rare-earth orthoferrite or or-
thochromite compounds, where two different magnetic sub-lattices strongly interact with each
other, which host different types of phase transitions (40, 41). One can simulate different types
of Dicke models or explore novel quantum vacuum phenomena at or in the SR phase by ju-
diciously choosing candidate materials. We suggest two necessary conditions that must be
satisfied for this analogy to be valid as a general guidance. First, one should find evidence that
g exhibits the Dicke cooperative enhancement (g o< v/N). Second, at the superradiant phase
boundary, one should find a simultaneous change in two magnetic sub-lattices that can be re-
vealed by a kink and softening in spectroscopic measurements. Theoretical mapping of a spin

Hamiltonian into Dicke models should be possible.

Conclusion

We observed the spectroscopic signatures of the magnonic SRPT in ErFeOs in thermal equilib-
rium. Our work demonstrates the long-sought SRPT predicted by Hepp and Lieb in the Dicke
model without the A? term (9) The magnon—spin system opens up the possibilities to explore
novel quantum vacuum phenomena predicted in the superradiant phase. At the superradiant
phase boundary of the Dicke model, a two-mode ground-state becomes perfectly squeezed (23).
This suggests that ErFeOg in a magnetic field offers a unique opportunity to achieve large-scale
quantum entanglement essential for quantum information science, intrinsically robust against
external noise — equilibration with the thermal bath provides a passive “error correction” of
decoherence events. Furthermore, our work provides insights into achieving photonic SRPTs
through an exchange pathway, as well as a novel way to discover and control condensed matter

phases based on powerful concepts developed in quantum electrodynamics.
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Fig.1. Comparison between a light-matter system and a magnon-spin system for the
Dicke superradiant phase transition (SRPT). (A) (Top panel) A light-matter hybrid sys-
tem with coupling strength g realized in a single-mode cavity with frequency wy containing
an ensemble of two-level atoms with transition frequency w,. (Bottom panel) A magnon—spin
hybrid system realized in ErFeO3. A single-mode magnon excitation of Fe3* (an ensemble of
Er3* spins) plays the role of single-mode cavity photons (two-level atoms) in the Dicke model.
(B) Normalized frequencies of the upper-polariton (w; ) and lower-polariton (w_) modes as a
function of g/wy calculated using the Dicke model without (red solid lines) and with (black
dashed lines) the A? term at zero-detuning (wy = w,). When the lower-polariton frequency
reaches zero, an SRPT occurs between the normal (N) and superradiant (SR) phases. With
the A% term, the lower-polariton frequency asymptotically approaches zero in the g/wy — 00
limit, thereby forbidding the SRPT. (C) Normalized frequencies of the upper-polariton (w.) and
lower-polariton (w_) modes as a function of w,/wy calculated using the Dicke model without
the A% term with g/w, = 0.1. When the lower-polariton frequency reaches zero, the system

crosses the phase boundary.
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Fig. 2. Spectroscopic evidence for the magnonic SRPT in ErFeOs;. (A) A schematic of the
magnetic structure of ErFeOs in the Ty, or superradiant phase (7' < Tg"). Er®* spins (blue
vectors) become antiferromagnetically aligned at low temperatures, while the Néel vector of
the Fe?" spins rotates toward the b axis. (B) Spin dynamics of the gQAFM of Fe3* spins and
Er?* spins in the I';, phase triggered by a THz magnetic field polarized along the a axis. The
magnitude of the net magnetization (Mg, and Mg,) oscillate (black box). The Fe3" spins are
ordered along the ¢ axis and cant toward the a axis (3 = 8.5 mrad). The plane where the Fe3*
spins lie is 6 = 49° off from the ac plane. (C) (Top panel) Absorption coefficient spectra as a
function of magnetic field in THz-TDS, showing a kink in the upper-polariton. Here the maxi-

mum (minimum) value is 60 cm~! (0 cm™!). (Two middle panels) Temperature spectra in the
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sample upon CW GHz illumination with a base temperature of 2 K. The maximum temperature
change is less than 90 mK. Here all spectra are scaled from O to 1. (Bottom panel) Negative
transmission spectra. Here all spectra are scaled from O to 1. The GHz spectra in the bottom
three panels show a softening in the lower-polariton frequency, which together with the kink in

the upper-polariton mode, demonstrates the magnonic SRPT; see Fig. 1C.
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Fig. 3. Mean-field calculation for the spin Hamiltonian of ErFeO; in H || a. (A) Theoretical
T'-H phase diagram. (Insets) Schematics of the spin configuration in each phase. (B) Resonance
frequencies of each spin subsystem as a function of the external magnetic field at (left panel)
2 K and (right panel) 10 K. Dots: experimental results. Dashed lines: calculated resonance
frequencies. The error bars show the full-width half-maximum of the peaks. The top x axis on

the left panel shows the SRPT occurs at the ratio of w, /wy = 0.11.
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Materials and Methods

Sample preparation

Polycrystalline ErFeO3 was first synthesized by a conventional solid-state reaction method us-
ing EryO3 (99.9%) and Fe,03 (99.98%) powders. According to the stoichiometric ratio, the
original reagents were weighed carefully and pulverized with moderate anhydrous ethanol in
an agate mortar. Mixtures were sintered at 1300 °C for 1000 minutes and then cooled to room
temperature. The sintered powders were thoroughly reground and pressed into a rod that is
70 mm in length and 5 - 6 mm in diameter by a Hydrostatic Press System (Riken Seiki CO. Ltd,
model HP-M-SD-200) at 70 MPa, and then sintered again at 1300 °C for sufficient reaction.
Single crystal samples were then grown by an optical floating zone furnace (FZT-10000-H-
VI-P-SH, Crystal Systems Corp; heat source: four 1 kW halogen lamps). Conditions like the

melting power and the rate of sample rotation were stabilized and controlled in the molten zone.

Gigahertz magnetospectroscopy

Thermal detection of electron paramagnetic resonances in static magnetic fields under
GHz radiation

We performed GHz magnetospectroscopy measurements in the Voigt geometry as we described
in the main text. Figure S1A shows our setup used for thermal detection of magnetic resonances
of Er®* spins. We generate GHz continuous waves (CW) using a diode (70 - 110 GHz, 25 mW,
Virginia diode, WR10SGX). For the frequency range (140 - 220 GHz), a frequency multiplier
(3.2 mW, WR5.1x2) was added. The GHz radiation was collimated by a 90° off-axis parabolic
mirror and shined on the sample to ensure that the whole area of the sample (4 mm in diameter)
was uniformly illuminated. A wire-grid polarizer was used to define the GHz magnetic field
polarization. The c-cut sample (800-pm-thick) was placed in a dry magneto-optical cryostat

(Quantum Design, OptiCool) at 2 K and static magnetic fields pioH || @ up to 6 T. A temperature
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sensor was located about 5 mm far from the sample and they sit on the same Cu plate. For each
fixed frequency, we swept the magnetic fields to 6 T with the step size of 0.02 T. At each
magnetic field, we waited for 5 s for the temperatures to be stabilized. We selected frequencies
that show a temperature change of 30 mK < AT < 90 mK at the peak temperatures.

Figure S1B shows an example of the thermal detection. With 90 GHz illumination, as we
increase the magnetic field, the sample temperature increases at some magnetic fields. This
is because when the incident photon energy coincides with the transition energy of the spin
resonances, non-radiative electron relaxation emitting phonons can happen, thereby increasing
the lattice temperature. This technique has been used for observing cyclotron resonances in the
microwave regime (42). One of the advantages of using this method over the transmission mea-
surement is that one can avoid the notorious standing wave effects that make the transmission
curve more complicated.

Figure S2A shows the measured curves at 2 K through this method with frequencies ranging
from 74 to 172 GHz which are 0-to-1 scaled. These data are used to generate the middle two
panels in Fig. 2C. Above 95 GHz, side peaks appear around 1.5 T. They are hybridized modes
of the Er¥* mode and a Fabry-Pérot cavity mode defined by the crystal itself (43). For 10 K
measurements, this method does not work since the cryostat can maintain the temperature at
10 K even with GHz radiation. At 2 K, however, the cryostat is using its maximum cooling

capability, and thereby any additional thermal load results in increases in the temperature.
Transmission in a pulsed magnetic field

High-magnetic field electron paramagnetic resonance (EPR) measurements in pulsed magnetic
fields with fixed frequencies ranging from 33 to 71 GHz and 63 to 190 GHz were performed
in the temperatures at 2 and 10 K, respectively. Pulsed magnetic fields up to 5 T were applied.

Magnetic fields were applied parallel to the a axis. All curves have been O to 1 re-scaled.
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At 2 K, we were able to observe the resonances in transmission spectra since the sample
used for the pulsed magnetic field experiment was thinner (200 pm) than the incident wave-
lengths, allowing us to avoid the standing waves effect inside the sample; Fig. S2A. Note that
the dielectric constant of ErFeO; is about 30. These data are used to generate the bottom panel
in Fig. 2C. Figure S2B shows transmission spectra at 10 K. These data are used in Fig. 3B (right
panel). Here, since the thermal energy of 10 K (208 GHz) is higher than the transition energies,
the population in the upper level is high and thereby the transmission changes are minute. This

results in the high background noise at low frequencies after we do the 0-to-1 normalization.

Terahertz magnetospectroscopy

Setup description

We performed THz time-domain magnetospectroscopy (THz-TDMS) measurements in the Voigt
geometry as we described in the main text. The b-cut sample (1162-pm-thick) is placed in a dry
magneto-optical cryostat (Quantum Design, OptiCool) with variable temperatures 7' between 2
and 300 K and static magnetic fields poH up to 7 T. We generate THz pulses via optical recti-
fication using a Ti:sapphire amplifier (795 nm, 0.2 mJ, 40 fs, 1 kHz, Spectra-Physics, Spitfire
Ace Pro XP) as a laser source that pumps a 1-mm-thick (110) zinc telluride (ZnTe) crystal,
while detection is accomplished through electro-optical sampling in another ZnTe crystal with

the same thickness.
Index of Refraction and Absorption Coefficient

We extracted the absorption coefficient spectra using complex indices of refraction of a sample
obtained by THz-TMDS (21). We define Ey(w) as the Fourier transform of an incoming THz
pulse Ey(t) illuminated on a homogeneous dielectric slab of thickness d (the sample thickness).
We neglected the ghost reflections from the backside of the sample (the Fabry-Pérot effect) since

they are well separated in time-domain from the main transmitted THz pulse and excluded in
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our analysis. We define the THz electric field transmitting with and without the sample as the
sample electric field Fy(w) and reference electric field F,(w), respectively. Each transmitted

electric field can be written as (44, 45):

r((JJ) = flg(w)pair(w, d)Eo(W) (11)
ES(W) = Elz(CU)ps(w, d)l?ggEo(Cd) (12)
where ¢, = #ﬁ”nk is the complex Fresnel transmission coefficient between mediums j and £,

Pj(w, d;) = e*odits = ¢i(@di/97; ig the propagator through medium 7, and the subscripts air, r,
and s refer to air, reference, and sample, respectively. The ratio between Er(w) and F, (w) is the

transfer function I (w), and it follows from Egs. |11|and [12| that:

ﬁ(w) _ E:s(w) _ t1~2t23 Fs(wad) - QﬁQEﬁl i‘ ﬁ3)~ ei(wd/c)(ﬁs—l) (13)
Er(w) t13 Pair(wy d) (nl + nQ)(n2 + 713)

Since we are dealing with a bulk sample that does not have any substrate, the surrounding

mediums can be taken as air by setting 7; = n3 = 1 in Eq.[I3] With this simplification,

4ng
(Rs+1)?

the pre-factor before the exponential term becomes with o = n,. Furthermore, we set
fis = ng(w) for ¢, and solve Eq.for Ny = ns(w)+iks(w) in the exponential term. Here, n(w)
is the index of refraction of the sample, and k4(w) its extinction coefficient. This approximation

is based on the fact that the absorption at the sample surface is negligible compared to the

exponential term. We obtain:

ﬁ(w): 4ns(w) pilwd/e) (1) _ 4ns(w) i (wd /) (ny(w)—1) p—(wd/)rs () (14)
(ns(w) 4 1)? (ns(w) 4 1)?

The magnitude and argument of Eq.[I4]read:

arg|H (w)] = (%d) (ng(w) — 1) = ng(w) =1+ widarg[]:!(w)] (15)
T = (@) waome) ) = — S (ns(w) +1)% - w
HWl = oy 1 12 = m(w) = — g S W)l a8)
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Then the absorption coefficient a(w) reads as follow:

a(w) = —#r(w) = —21n M

c d 4ng(w) [H ()] {17

To summarize, from E(t) and F(t), obtained in this work, the transfer function [(w) can be

calculated as E(w)/F;(w), and n(w) and a(w) follow from Eqs. and respectively.
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Supplementary Text

THz absorption spectra at high temperatures

Figure S3A shows temperature-dependent absorption spectra of gAFM of Fe®* spins. The kink
occurs at 4 K which is the superradiant phase boundary at O T. Below this temperature, the Fe3*
order parameter <Sj’B> becomes finite. Figure S3B shows magnetic field dependence of gAFM
of Fe3* spins. At 10K, only a slight change was observed at low magnetic fields without any
signature of the phase transition, consistent with our phase diagram. Meanwhile, two modes
that emerge at high fields are Er** EPR modes. As described in the main text, ErFeOs can
be modeled by the two-sublattice model. This implies we should expect four modes in total:
quasi-ferromagnetic (QqFM) mode and qAFM for Fe3* spins, and in-phase and out-of-phase
EPR modes for Er** spins. Here, we are considering the relative phase of precession of two
Er** spins. A detailed derivation follows in the next section and can be found in Ref. (/8). Our
theory finds the lowest mode is the out-of-phase mode that is coupled to qQAFM, establishing a
magnon-spin system. Due to the polarization selection rule described in Fig. 2B, the gFM mode

does not appear in this plot.

Superradiant phase transition at finite detuning

An anti-crossing of two polaritons occurs at the zero-detuning point (wy = w,). When the
normalized coupling strength (1 = g/wy) reaches the critical value of 0.5, the system undergoes
the SRPT, and w_ becomes zero. As shown in Fig. S4A, for = 0.5 the SRPT occurs when
wo = w,. Forp = 0.1 (Fig. S4B), a situation more comparable to ErFeOg3, we find the phase
boundary moves to the w, < wy, while the anti-crossing still occurs at the zero-detuning point.
Thus one can achieve the SRPTs with a small 7 as long as v = w, /wy is small enough to satisfy

the inequality (1) in the main text. By contrast, when v > 1, the 7. becomes higher than 0.5.
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Resonance frequencies from the spin model

We calculate the resonance frequencies from the spin Hamiltonian with the method of Ref. (/8).

The Heisenberg equations of motion of the twelve spin operators are

ds*®

h dt - _58 X gEr:uBBISEr(sA/B7 SA/B)’ (18)
dS*

h dt —S® X grep B (8%, S, (19

dropping the unit cell index due to the assumption that spins are spatially uniform, with s €

A, B}, and B¢, (B3.) the mean-fields for the Er** (Fe3") spins,
Er Fe p

22 JEr 5 2 /
By, — BOC s [JSS ~ (D x S°) — Ag 5} , (20)
HBYEr HBOE: ;g
s DC 22re Jre s <Fe s s 5,8’ s s
By, = BPC ¢ “FelRegs ey gv [JS—(D’ xS)—AFe~5],
B YFe HBGFe HBOFe TEG

1)
where 5 is the complementary sublattice of s. Eq. [21]is the same as that in Ref. (18) but Eq. 20]
has an additional term coming from the inclusion of the Er®"-anisotropy.

The equations of motion are linearized around the equilibrium mean-fields, B§, g, = Bgyr. (88, SAB).

These equations of motion correspond to the effective Hamiltonians for the Er and Fe spins

Hlér - gErMBss : BISEr = gEr:U’BsﬁlBEr’ (22)

Hls:e - gFe/“LBSS : B;e = gFe/’LBSﬁ|BIS:‘e|7 (23)

where s (S)) is the spin operator in the direction parallel to the mean-field. The finite-

temperature average of the spin operators then gives the self-consistency equations

Bs

(s7) = — tanh (—QZZL;|) (24)
Sgus|B;

(S) = —Bs (%) , 25)
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where Bg(z) = 25H coth (23 z) — 5 coth (%) is the Brillouin function.

The linearized equations of motion are thus found to be

d _

hﬁéss = —ds° X g,U/BB]SEr<5A/B7 SA/B) — 5" X g,U/BB}S::r<55A/B7 5SA/B)7 (26)
d _ _

h—08" = —48" x gusBg (s™B, SVB) — 8% x gugBi (5B, 0SB, (27)

where ds® and 0S? are the difference of the spin operators and their mean-field values.

Eqgs. 26| and |2'/| are solved to obtain the resonance frequencies. As coupled homogeneous
linear differential equations with constant coefficients they are solved by ds* = s°(0)e™&! and
§S° = §S%(0)e™r!, where the frequencies w and corresponding normal modes are found by
solving a set of linear equations, iws = Ms, where s = (s*,5% S4 SP) and M is an anti-

Hermitian matrix. The imaginary part of the eigenvalues of )M are the resonance frequencies.

Model fitting

Most model parameters are taken from previous literature, including all Fe-Er interaction pa-
rameters and most of the Fe** subsystem. We fit other model parameters, summarized in Tab.
Where previously parameters are available, our fits are consistent with prior work.

We use the large majority of Ref. (18)’s model parameters for Fe** subsystem, adjusting only
A, and gF®. We also use that reference’s b- and c-axis Er** g-factors along b and c axes. They
are listed without uncertainty in Tab.[I] We follow the notation and parametrization in (I8).

We adjust some model parameters that earlier experimental data was fairly insensitive to —
mainly parameters of the Er’* subsystem, and introduce a new parameter, the anisotropy energy
of the Er** spins. We fit the model parameters to match the experimentally obtained THz and
GHz magnetospectroscopy resonance positions by minimizing the cost function

O = Z w; Z fz] fz] : (28)

] €i-th curve U
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Fe3t subsystem Er** subsystem Fe3*—Er’*" interaction

Jre = 4.96 meV Jg: = 0.01328(5) meV J = 0.6 meV
DFe = —0.107meV | a, =0.124(4)meV | D, = 0.034meV
A, = 0.0073 meV a, = 0.1480(3) meV D, = 0.003 meV

A, =0.0176(3) meV ay, = 0meV
A,. =0meV gt = 4.16(8)
g™ = 3.5734(3) gt = 3.4
gfe =2 g = 9.6
g =10.6

Table 1: Mean field model parameters from fitting and (/8). Listed parameter uncertainties are
errors of fit, determined by the method in (46).

where ¢ indexes the dataset that is fit to (there are five sets: four spectral modes versus H and
the H = 0 critical temperature, as described below), and V; is the number of experiment data
points in the i-th curve. w; is the weight assigned to the ¢-th curve (described below), but fits
are relatively insensitive to this choice; j indices experiment data points in the ¢-th dataset; and
fi; and f;; are the calculated and measured observables frequencies of i-th mode at j-th data
point, respectively.

The five datasets are the four spectral mode frequencies as a function of H, and the H = 0
critical temperature. For the first four datasets, f;; is the resonance frequency of mode 4 and f;;
is the mean field calculation of that mode at the /7 and 7" values corresponding to measurement
J. The fifth “dataset" is simply the temperature at which w_ has a cusp. We weigh most datasets
with 0.2; the exceptions are the Fe** mode, with its critical softening, we weigh slightly more,
with weight 0.3, and the Er* slightly less, with weight 0.1.

Figures SSA-B and Fig. 3 of the main text compares the mean-field calculations with the
experimenta data they were fit to. Figure S5C shows the predictions for 7' = 10 K using these
parameters (this data was not included in the fit). Tab.[I|presents the obtain model parameters as
quantities with the quoted uncertainties using the method in (46) without including experiment

measurement errors.
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Extended Dicke model

The derivation of the extended Dicke model from the spin Hamiltonian follows “Derivation of
extended Dicke Hamiltonian" of Ref. (/8). We briefly outline this here. The spin Hamiltonian
is split in three parts, namely Hg., Hg, and Hg; pe.

First, we rewrite the Fe>" subsystem in terms of magnon annihilation and creation operators.
The magnons are collective spin-fluctuations above mean-field configuration for the bare Fe®"

subsystem. The ground state is the same as previous studies (78, 20, 26),

~ S Si]_’l /80 B S Sin 60
ss= o |, s=[ o (29)
—S5 cos [y S cos By

where 3 is the mean-field canting angle of the Fe*-spins from the a axis (18, 26)

1 ZFeDlZ:/
= —— arct < . 30
Bo 5 arctan LFB Jre— AT AL (30)
We neglect the non-diagonal Fe*"-anisotropy term, A%,
Spin-wave theory yields (18, 26)
Hre ~ Z hwkaZak + const, (31

k=0,7

with wy, = grein/fiy/(bcosk — a)(d cos k + ) and

a = [S/(grtin)] [~ Afe — Afe — (2reJre + AR, — AR.) c08(200) + 2. Df, sin(25,)]  (32)

b = [S/(OFettn)]zFe Jre (33)
¢ = [S/(gretn)] [(2re Jre + 2AF, — 2AF,) cos(280) + zre D, sin(2/)] (34)
d = [S/(gretn)] [—2FeJre cO8(230) — 2re DY, sin(2)] - (35)

The derivation is as is from Ref. (/8). First, we compute the Heisenberg equations of motion

of S for Hg.. Then we linearize them by expressing S8 = S4B + §SB. The effective
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Hamiltonian of the linearized equations of motion are decoupled harmonic oscillators. These

harmonic oscillators are the magnons. The spin fluctuations in terms of ladder operators of the

harmonic oscillators are
g —(Toy — T) cos By
08} = [ 57 (Yo — Yy)
2Ny .
—(Tg — Tw> Sin 60

g (To + T ) cos Bo
0 —(T() —f- Tﬂ—) Sin /BO

where

T - bcosk —a 1/4aT_k+ak
"~ \dcosk —a V2

9

Y, — (dcosk + c>1/4 i(aT_k — ag)

V2

bcosk —a

(36)

(37)

(38)

(39)

We only keep k = 0, 7 contributions, the the gFM and the gAFM modes of Fe* respectively,

as there is negligible coupling to the other modes. Henceforth these modes are labeled as agrm

and AqAFM -

Next, we apply the collective spin approximation on the Er*"-spins,

finding

N N
Hee = ggruBE;_Blm)C + 2 JEr zo:sf ) zo: %i N Z Z A}gr

=1 i'=1 i E=z,z

ZEr J Er

AE
UL S gk e

NO s=AB¢=z,z
+ _ yA B
where Zé = 25 + Zg.
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(40)

(41)

(42)

(43)



Finally, we rewrite Hg,.r in terms of the spin-fluctuation operators of the Fe?"-spins and

the collective spin operators of Er**-spins to give

Herre = 45(J sin By + D, cos o) X7 + (—4SD, cos Bo) X, + \/NEO[(J cos o — Dy sin o) T X5
(44)
+ JYOE; + (Dysin Bo) 123, + D, Yz¥, — (Jsin By + D, cos Bo)ToXT]. (45)
We have different pre-factors of the parameters compared to Ref. (/8) since they have extra
factors of 1/2 as the Er*"-spins are modeled as 1/20°, whereas we absorb this in our spin
variables s°.
The complete spin-Dicke Hamiltonian, expressed in terms of the magnonic operators and

collective Er3*-spin operators is

rJ I
%Dicke ~ Z ha}ma;rnam + EzE;r + Ey2; + /LngngIU)CE‘i + ZF}V—EEA : EB
m:{qFM,qAFM} 0

Agr S ga? Zg
- Z Z ]\f (2§>2 + \/—N_o (CL(T;AFM + anFM> Xy + \/NLO (CL(T]FM - aqFM) Sy

¢=x,2 s=A,B 0

9y’ ~ 19 - 9
+ == <a(];AFM + anFM) Ey + —= (a:;AFM — anFM) Zz + <CE:SFM + (quM> 2;

VN VN VN

(46)
E, =45(Jsin By + D, cos fy), E, = —4SD cos §; and the five coupling strengths are
b 1/4
gz = V&S (J cos By — Dy sin fy) (dti) (47)

1/4
g9, = V15J (CH C) (48)

b—a
1/4
gy = VxSD,sin 3 (Zt > (49)
N1/
9. = VzSD, (—Z+ ;) (50)
b_ )\ VA
g» = VxS (—Jsin By — D, cos ) (d+c) : (51)

x = tanh [_|EI+“BGEBIDCI

Ty } is the spin-dilution factor that incorporates the effect of temperature.
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Figure S1: Thermal detection of magnetic resonances of Er®* spins. (A) A schematic of the

setup for thermal detection. (B) The sample temperature as a function of the static magnetic

field with 90 GHz illumination. When the incident photon energy coincides with the transition

energy of magnetic resonances, the temperature increases.
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Figure S2: Raw data of GHz measurements with 0-to-1 scaled. (A) From 33 to 71 GHz
(74 to 172 GHz), transmission (temperature) spectra as a function of the magnetic field at 2 K.
These data are used to generate the two middle panels and the bottom panel in Fig. 2C. (B) From
63 to 190 GHz, transmission spectra as a function of the magnetic field at 10 K. Red triangles

indicate the resonance peak positions that are used in Fig. 3B (red circles).
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Figure S3: Terahertz absorption coefficient spectra (A) Absorption coefficient spectra as a
function of temperature in THz-TDS, showing a kink at the phase boundary. (B) Absorption
coefficient spectra as a function of magnetic field in THz-TDMS. The gAFM mode of Fe** and
two Er** EPR modes are observed. The out-of-phase mode is plotted in Fig. 3B (right panel).

All three modes are reproduced by our mean-field calculation in Fig. S5C.
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Figure S4: Occurrence of the superradiant phase transition at finite detuning (A) Normal-
ized frequencies of the upper-polariton (w;) and lower-polariton (w_) modes as a function of
w,/wy calculated using the Dicke model without the A% term with g/wy = 0.5 and (B) with

g/wo =0.1.
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Figure S5: Comparison between experimental data and fitting results for the extended
data (A) Temperature dependent absorption peaks of Fe3* ions. (B) Magnetic field dependent
absorption peaks of all four modes at 2 K, and (C) at 10 K. We present our fitting curves in
A and B, and calculations for 10 K in C. The blue circles, red triangles, and red circles in B
are extracted from Fig. 2B, while those in C are from Fig. S3B. The blue triangles correspond
to gFM of Fe*, obtained from separate experiments with a 90° rotated incident THz magnetic

field polarization.
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Figure S6: In-phase and out-of-phase modes of Er*™ spins below and above the critical temper-

ature, showing shifts only for the 2 K case. Lines (theory), points (experiment).
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Figure S7: Two order parameters evidencing the magnonic SRPT calculated at 2 K.
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