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Two-level atoms coupled with single-mode cavity photons are predicted to ex-

hibit a quantum phase transition when the coupling strength exceeds a critical

value, entering a phase in which atomic polarization and photonic field are

finite even at zero temperature and without external driving. However, this

phenomenon, the superradiant phase transition (SRPT), is forbidden by a no-

go theorem due to the existence of the diamagnetic term in the Hamiltonian.

Here, we present spectroscopic evidence for a magnonic SRPT in ErFeO3,

where the role of the photonic mode (two-level atoms) in the photonic SRPT

is played by an Fe3+ magnon mode (Er3+ spins). The absence of the diamag-

netic term in the Fe3+–Er3+ exchange coupling ensures that the no-go theorem

does not apply. Terahertz and gigahertz magnetospectroscopy experiments re-

vealed the signatures of the SRPT – a kink and a softening, respectively, of two

spin–magnon hybridized modes at the critical point.

Main text

Introduction

An ensemble of two-level atoms can exhibit coherence through cooperative interaction with

a single-mode quantized radiation field. Such cooperative optical processes have been exten-

sively studied since the pioneering work of Dicke in the context of superradiance (1) and have

recently attracted much-renewed interest in cavity quantum electrodynamics (QED) (2–4), con-

densed matter physics (5–7), and quantum information science (8). In contrast to superradiance

phenomena, recent cavity QED studies of materials have focused on thermal equilibrium mod-

ified by cavity-enhanced vacuum electromagnetic fields; see Fig. 1A (top panel).

A profound consequence of the Dicke model is a quantum phase transition, the superradiant

phase transition (SRPT) (9), where when the strength of the cooperative light–mater coupling
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(g) exceeds a critical value, a static coherent electric or magnetic field and a finite atomic po-

larization appearing spontaneously and simultaneously. Realization of the SRPT has been of

much interest, but its occurrence in thermal equilibrium has been a subject of debate (10,11). A

no-go theorem exists (12), while various methods have been proposed to circumvent the no-go

theorem (13–18). At the core of the no-go theorem is the diamagnetic term (also known as the

A2 term) that inevitably appears in the minimal-coupling Hamiltonian describing the electric-

dipole light–matter interaction; this term adds positive energy to the system, causing the ground

state to be robust against the SRPT (12, 19). Figure 1B plots the frequencies of the upper and

lower polaritons (ω+ and ω−, respectively, normalized by ω0) as a function of g/ω0, where ω0

is the cavity frequency, in the presence (dashed line) and absence (solid line) of the A2 term at

zero detuning, ω0 = ωa, where ωa is the atomic frequency. The SRPT occurs when there is no

A2 term, resulting in a complete frequency softening (a kink) of ω− (ω+) at the phase boundary.

A recent theoretical study has suggested that a magnonic version of the SRPT can occur in

ErFeO3 via ultrastrong magnon–spin coupling because the nature of the coupling is an exchange

interaction for which there is no A2 term (18). Further, terahertz (THz) magnetospectroscopy

experiments on a crystal of ErFeO3 have revealed ultrastrong coupling between a magnon mode

of ordered Fe3+ spins and paramagnetic Er3+ spins (20). This system can be modeled by the

Dicke Hamiltonian, where the Fe3+ magnon mode (the Er3+ spins) plays the role of the single

cavity mode (the two-level atoms) of the Dicke model; see Fig. 1A (bottom panel). The g

of the Fe3+–Er3+ coupling exhibited Dicke cooperativity (1, 5), i.e., g ∝
√
N , where N is

the Er3+ spin density (20). More recently, a short-range atom–atom interaction (Er3+–Er3+

exchange interaction) has been incorporated for the simulation of an extended Dicke model (21).

However, spectroscopic signatures of the SRPT – i.e., a polariton frequency softening down to

zero and a concomitant change in the other polariton branch – have not been achieved to date.

Here we report an unambiguous experimental demonstration of the magnonic SRPT in
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ErFeO3 through magnetospectroscopy measurements in the THz and gigahertz (GHz) frequency

ranges at low temperatures. We observed that, at the phase boundary between the normal

(N) phase and the superradiant (SR) phase, the frequency of a branch of the Er3+ electron

paramagnetic resonance (EPR) approaches zero while the frequency of a zone-boundary Fe3+

magnon displays a kink. We developed an extended Dicke model, incorporating the single-

ion anisotropy energy of Er3+ spins, which accurately reproduces the experimentally observed

mode frequencies. The establishment of the magnonic SR phase will enable further exper-

imental explorations of the nonintuitive vacuum-induced ground states predicted for the SR

phase (22, 23).

Expected spectroscopic signatures of the superradiant phase transition

The standard Dicke model reads,

Ĥ/ℏ = ω0â
†â+ ωa

(
Ŝz +

N

2

)
+

2g√
N
(â† + â)Ŝx, (1)

where â† (â) is a photon creation (annihilation) operator, Ŝi is a spin operator in the i direction,

and N is the number of two-level atoms (Er3+ spins). This model predicts that the SR phase

exists at zero temperature when the inequality

g >

√
ωaω0

2
(2)

is satisfied. In the case of zero detuning (ωa = ω0), this condition reduces to g > ω0/2, i.e.,

ηc = 0.5 is the critical value for the normalized coupling strength η ≡ g/ω0. One can imagine

the effect of g is largest when the light and atom degrees of freedom are on-resonant at zero

detuning. Therefore, the standard strategy for realizing the SRPT is to maximize g to reach

ηc = 0.5 for a fixed ω0 while maintaining zero detuning (ωa = ω0); see Fig. 1B. However, even

when η < 0.5, the SRPT can occur if one can reduce ωa to satisfy Eq. 2 for fixed g and ω0.

For example, when η = 0.1 (Fig. 1C), the inequality in Eq. 2 becomes ν ≡ ωa/ω0 < 0.04; that
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is, the SRPT occurs as a function of ν when it is decreased to the critical value νc = 0.04. In

general, when η < 0.5 (η > 0.5), the SRPT occurs νc < 1 (νc > 1), i.e., on the left (right) side

of the zero-detuning point when ωa is varied for fixed g and ω0 (24); see Fig. S4B.

This nonstandard strategy aptly works for realizing a magnonic SRPT in ErFeO3. The

Fe3+–Er3+ coupling strength g and the Fe3+ magnon frequency ω0 are nearly independent of

the applied magnetic field, H , and their ratio is η < 1, while the Er3+ EPR frequency ωa

strongly depends on the applied magnetic field, via the Zeeman effect. Therefore, applying a

magnetic field can tune ν. With realistic values of g and ω0 for ErFeO3 (18,21,25), the SRPT is

expected to occur at a critical magnetic field, Hc, when the temperature, T , is sufficiently low

(<4 K). Notably, the critical temperature, Tc, is maximum when ωa = 0, i.e., when H = 0.

As H increases, Tc decreases, and hence, the SR phase is transformed into the N phase at

H = Hc(T ) when H is varied at a constant temperature; as T is decreased, Hc monotonically

increases from zero to a maximum value at T = 0, which is a quantum critical point. Figure 1C

shows the frequencies of the two polariton branches, ω±, normalized by ω0, as a function of

ν calculated using the Dicke model in the thermodynamic limit (N → ∞) in the absence of

the A2 term; we assumed η = 0.1, which is a typical value found in the ultrastrong coupling

regime (3, 4, 6).

Magnetic structure of ErFeO3

When 4 K < T < 87 K, Fe3+ spins are antiferromagnetically ordered along the c axis with

a canting toward the a axis by a small angle β (Γ2 in Bertaut’s notation) induced by the

Dzyaloshinskii–Moriya (DM) interaction, which produces a weak ferromagnetic moment along

the a axis (26). As T decreases from 4 K, the Néel vector of Fe3+ continuously rotates toward

the b axis (27), and paramagnetic Er3+ spins develop C-type antiferromagnetic order along the

c axis (28). Figure 2A shows the orthorhombic perovskite structure of ErFeO3 that consists of
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two Fe3+ (SA/B) and two Er3+ (sA/B) sublattices, described by the space group D16
2h-Pbnm

below 4 K (Γ12). This phase transition (Γ2 → Γ12) corresponds to the N→SR phase transition

– i.e., the appearance of the static coherent electric or magnetic field and atomic polarizations in

the context of a photonic SRPT (18). The two order parameters in the magnonic SRPT can be

defined as ⟨SA/B
y ⟩ and ⟨sA

z − sB
z ⟩ (21). Most importantly, the application of a magnetic field can

induce a Γ12 → Γ2 transition (29, 30), which we utilize in demonstrating the magnonic SRPT.

THz and GHz magnetospectroscopy studies of ErFeO3

We performed transmission magnetospectroscopy experiments on single crystals of ErFeO3 in

the Voigt geometry in the THz and GHz photon frequency ranges to monitor the magnetic field

evolution of the upper polariton (ω+) and lower polariton (ω−) modes of this Fe3+–Er3+ hybrid

system in Fig. 1C. The application of a static magnetic field, HDC, along the a axis continuously

tuned the ‘bare’ Er3+ EPR frequency ωa via the Zeeman effect, whereas the ‘bare’ Fe3+ magnon

mode frequency ω0 was nearly independent of HDC. Here, the ‘bare’ frequencies refer to the

frequencies of the Fe3+ and Er3+ modes when they are uncoupled. The magnetic field moved

the system out of the SR phase into the N phase at a critical field of µ0HDC = 1.8 T at T = 2K

(where µ0 is the vacuum permeability).

In the THz frequency range (frequencies above 0.25 THz), we used THz time-domain mag-

netospectroscopy (THz-TDMS) (31) to monitor the ω+ mode. On the other hand, to monitor the

ω− mode in the GHz range (24), we used a set of continuous-wave devices (Virginia Diodes,

Inc.) producing single-frequency microwave radiation at frequencies below 172 GHz. From

33 GHz to 71 GHz, we recorded the intensiy of radiation transmitted through the sample as a

function of magnetic field, which exhibited decreases at magnetic resonances. From 74 GHz to

172 GHz, we monitored the sample temperature, which increased at resonance magnetic fields

due to resonant absorption of microwave radiation. Through these methods, we were able to
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locate the resonance frequencies of both the ω+ and ω− modes as a function of magnetic field.

In the THz-TDMS experiments, the magnetic field component of the incident THz wave

was set to be parallel to the a axis to access the quasi-antiferromagnetic (qAFM) magnon mode

of Fe3+ (25) while a static magnetic field was applied along the a axis; see the black box in

Fig. 2B. The THz magnetic field parallel to the net magnetization direction triggered the out-

of-phase spin precession in SA/B through the transient Zeeman torque, as shown in Fig. 2B. A

b-cut sample made this configuration possible in the Voigt geometry. In this configuration, we

found a pronounced absorption peak at 0.8 THz, which we interpret as the ω+ mode. The top

panel of Fig. 2C shows the magnetic field dependence of this mode in an absorption coefficient

(α) plot (24). The data signals a clear phase transition at 1.8 T as a kink in the field evolution

of its frequency. Below 1.8 T, the feature rapidly increased with HDC, whereas above 1.8 T, it

slowly decreased with increasing HDC. This behavior is consistent with what is shown for the

ω+ mode in Fig. 1C.

The bottom three panels of Fig. 2C display spectra taken in the GHz range, showing a dra-

matic softening behavior of the ω− mode. At 0 T, a broad feature is seen at around 150 GHz,

but it rapidly sharpens and red-shifts as the applied magnetic field is increased. The frequency

of this mode eventually becomes lower than the lower bound of our frequency range but quickly

reappears with increasing field, leaving a field gap of 0.2 T between the two peaks at 33 GHz.

The middle of these peaks is located at 1.8 T, which agrees with the kink position of the ω+ mode

in the top panel. This softening behavior is consistent with what is shown for the ω− mode in

Fig. 1C. A further increase of the field reveals a Zeeman-type response of the Er3+ spins, signi-

fying the absence of antiferromagnetic order in the N phase. The ω− mode eventually appears

in THz absorption spectra in the top panel above 5.5 T, which confirms the consistency of our

two different types of measurements. The less bright line that appears slightly above the ω−

does not play a significant role in the SRPT (24); see Fig. S6.
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Phase diagram and polariton frequencies

We model our experimental results with a spin Hamiltonian that has been widely studied for

rare-earth orthoferrites (18, 32, 33), augmenting it with a term accounting for the anisotropy of

the Er3+ spins and mapping it to an extended Dicke model; details of the mapping appear in the

next section. Figure 3A displays a mean-field T -H phase diagram of the spin Hamiltonian, for

0 ≤ T ≤ 6 K and 0 ≤ µ0H ≤ 3 T. This phase diagram, consistent with Ref. (29), shows the

SR–phase boundary obtained by using ⟨sA
z − sB

z ⟩ of Er3+ spins as the order parameter. One can

also use ⟨SA/B
y ⟩ of Fe3+ to construct the same phase boundary (24), since the two subsystems

simultaneously order (Fig. S7). The spin configurations are shown as an inset in Fig. 3A.

Above 4 K at 0 T, the system hosts antiferromagnetically ordered Fe3+ spins while Er3+

spins are paramagnetic (Fig. 2A). As we cool down the system, the b axis component of Fe3+

spins becomes finite through the rotation of the Néel vector around the a axis. This rotation be-

havior has been evidenced by nuclear magnetic resonance experiments (27). At the same time,

Er3+ spins antiferromagnetically order along the c axis (Fig. 2A). When we apply an external

magnetic field along the a axis stronger than Hc, we break the antiferromagnetic ordering of

Er3+ spins and restore the Fe3+ Néel vector along the c axis. These occur simultaneously due to

the Fe3+–Er3+ antisymmetric exchange interaction that couples spins and magnons in the Dicke

model as we discuss in the following section.

Figure 3B shows the frequencies of both polariton branches, calculated based on the spin

Hamiltonian, below (2 K, left panel) and above (10 K, right panel) the critical temperature as a

function of H , together with experimental results from Fig. 2C. At 2 K, good agreement was

obtained by fitting Dicke model parameters (24). In particular, our calculations reproduce the

observed ω+ kink and ω− softening. At 10 K, we calculated the frequencies with the parameters

obtained at 2 K. The two modes at 10 K do not display any critical behavior and are much less

hybridized. Therefore, the two branches are essentially the qAFM mode of Fe3+ spins (∼ ω0)
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and the EPR of Er3+ spins (∼ ωa), respectively.

Note that the zero-field value of the Er3+ resonance is finite even at 10 K (34). This zero-

field splitting is a result of the lifted degeneracy of the Er3+ ground state doublets (20,34) due to

the symmetric Fe3+–Er3+ exchange interaction that exerts an internal effective magnetic field on

Er3+ spins. Our fitting extracts the bare ω0 and ωa appearing in the extended Dicke model (24),

and using these values we indicate the value of ν = ωa/ω0 in the top x axis in the left panel,

finding the critical ratio νc ∼ 0.11.

Mean field theory and extended Dicke model

The system is described by a spin Hamiltonian on a bipartite lattice with a unit cell consisting

of two Er3+ and two Fe3+ spins (18,20). Nearest-neighboring spins interact via direct magnetic

exchange. Owing to strong spin-orbit coupling in Fe3+, nearest neighbors of Fe3+-spins also

have anti-symmetric Dzyaloshinskii–Moriya (DM) interactions between them. Both the Fe3+

and Er3+ are magnetically anisotropic, preferring the xz-plane in our notation. Although the

physical system has four Fe3+ ions in a unit cell, the effective two-sublattice model is able to

reproduce the resonance frequencies accurately since the Fe3+-anisotropic energies are much

smaller than the anti-symmetric (DM) interaction energy (26, 32). The Hamiltonian describing

these effects is

H = HFe +HEr +HEr-Fe, (3)

where

HFe =
∑
s=A,B

N0∑
i=1

µBg
x
FeS

s
i,xB

DC
x + JFe

∑
⟨i,i′⟩

SA
i · SB

i′

−Dy
Fe

∑
⟨i,i′⟩

(
SA
i,zS

B
i′,x − SB

i′,zS
A
i,x

)
−
∑
s=A,B

N0∑
i=1

(
Ax

Fe(S
s
i,x)

2 + Az
Fe(S

s
i,z)

2
)
,

(4)
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HEr =
∑
s=A,B

N0∑
i=1

µBg
x
Ers

s
i,xB

DC
x + JEr

∑
⟨i,i′⟩

sA
i · sB

i′

−
∑
s=A,B

N0∑
i=1

(
Ax

Er(s
s
i,x)

2 + Az
Er(s

s
i,z)

2
)
,

(5)

and

HEr-Fe =

N0∑
i=1

∑
s,s′=A,B

[
Jssi · Ss′

i +Ds,s′ · (ssi × Ss′

i )
]
. (6)

The S
A/B
i and s

A/B
i correspond to Fe3+ (S = 5/2) and Er3+ (s = 1/2) spin operators at the

ith-site in the A/B sublattice;
∑

⟨i,i′⟩ represents a sum over the appropriate nearest neighbors;

N0 is the number of unit cells; µB is the Bohr magneton; JEr, JFe, and J are the direct exchange

coupling strengths between Er3+–Er3+, Fe3+–Fe3+ and Fe3+–Er3+ spins, respectively; Dy
Fe and

Ds,s′ are the DM-coupling strength between Fe3+–Fe3+ and Fe3+–Er3+ spins, respectively;

A
x/z
Fe and A

x/z
Er are the anisotropy strengths of Fe3+ and Er3+ spins respectively along the x/z

axes; and gxFe/Er are the x component of the Landé g-factor tensors for Fe3+ and Er3+, which are

assumed to be diagonal.

We included Er3+-anisotropy terms in Eq. 5 which were neglected in previous studies (18,

20). However, magnetization measurements (35, 36) suggest that Er3+-anisotropy is strong in

this material. The inclusion of the terms is further justified by its large value compared to the

exchange interaction between the Er3+-spins, i.e., Ax/z
Er > JEr. Including the Er3+-anisotropy

terms in the Hamiltonian produces a noticeably improved fit to the experimental data (Figs. 3B

and S5). This is further elaborated in the Supplementary Material (24).

We calculated the ω± by a combination of mean-field theory and linearization of the Heisen-

berg equations of motion of the spin operators, as in Ref. (18). Assuming that the average values

of the spin operators, SA/B and sA/B, are the same in all the unit cells, we self-consistently solved

for the twelve mean-fields, S̄A/B and s̄A/B in thermal equilibrium. The resonance frequency

were obtained by linearizing the Heisenberg equations of motion of these twelve spin operators
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around the mean-field values and solving the resulting linear differential equations (24).

The Er3+ parameters in Eq. 5, namely JEr, gxEr, A
x
Er, A

z
Er, as well as Az

Fe and gxFe in Eq. 4, are

used as fitting parameters to the spectroscopic data at T = 2K (Fig. 3B). However, the same

set of parameters reasonably reproduces the spectroscopic data at 10 K (Fig. S5). The rest of the

parameters in Eqs. 4 and 6 are the same as those used in Ref. (18). Details of the fitting process

and the parameter values are provided in (24).

The spin Hamiltonian of ErFeO3 can be accurately mapped to an extended Dicke Hamilto-

nian, which provides a natural explanation of the superradiant phase transition. Using spin-wave

theory, the Fe3+ spins SA/B
i are re-written in terms of a set of magnonic creation and annihila-

tion operators (aqFM, aqAFM, a†FM, a†FM ) (18,26), where the "qFM" ("qAFM") corresponds to the

k = 0 (k = π) quasi-momentum modes. Following Ref. (18), we also make a collective spin

approximation for the Er3+-spins,

s
A/B
i,ξ =

1

N0

N0∑
i=1

s
A/B
i,ξ (7)

≡ 1

N0

Σ
A/B
ξ , (8)

where ξ = x, y, z and the last line defines two sets of spin operators Σ±
ξ =

∑
i

(
sA
ξ,i ± sB

ξ,i

)
.

The magnon representation of Fe3+ is justified owing to the strong exchange interaction JFe =

4.96meV, making it highly dispersive, while the Er3+ exchange interaction, JEr = 0.0132meV,

is more than two orders magnitude smaller. Hence the Er3+-spins are well-described by the

collective spin approximation, and they couple only to the qAFM and qFM iron modes. The
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explicit form of the extended Dicke Hamiltonian is

HDicke =
∑

m:{qFM,qAFM}

ℏωma
†
mam + ExΣ

+
x + EyΣ

+
y + µBµ0g

x
ErH

DC
x Σ+

x +
zErJEr

N0

ΣA ·ΣB

−
∑
ξ=x,z

∑
s=A,B

Aξ
Er

N0

(Σs
ξ)

2 +
gx√
N0

(
a†qAFM + aqAFM

)
Σ+

x +
igy√
N0

(
a†qFM − aqFM

)
Σ+

y

+
gy′√
N0

(
a†qAFM + aqAFM

)
Σ−

y +
igz√
N0

(
a†qAFM − aqAFM

)
Σ−

z +
gz′√
N0

(
a†qFM + aqFM

)
Σ+

z .

(9)

Since the Er3+ decouple from the magnon modes for k ̸= 0, π, we omit these in Eq. 9. The Sup-

plementary Materials shows the derivation of Eq. 9 from Eqs. eqs. (3) to (6) and the equations

for the Dicke model parameters (ωqFM, ωqAFM, Ex, Ey, gx, gy, gz, gy′ , and gz′) (24).

Similar to Ref. (18), the temperature dependence is incorporated through the dilution factor

x = tanh

[
|Ex + µBµ0g

x
ErH

DC
x |

2kBT

]
, (10)

where kB is the Boltzmann constant. The only difference between Eq. 9 and the extended Dicke

model of Ref. (18) is the Er3+-anisotropy terms.

Discussion

We provided spectroscopic evidence that the Γ12 → Γ2 phase transition in ErFeO3 can be

understood as the SR→N transition in central to quantum optics (18). This phase transition

can also be regarded as the magnetic transition of the Jahn-Teller type (37, 38). What makes

our mode softening distinct from others found in various solids, is the concomitant kink and

applicability of the Dicke model. While our softening resembles a softening at a spin-flop

transition, as found in MnF2 (easy-axis antiferromagnet) (39), the softening occurs without any

concomitant kink since only one magnetic sub-lattice exists in the material. Furthermore, this

softening occurs only when the external magnetic field is applied parallel to the Nèel vector

(easy-axis), in contrast to our work where the field is applied perpendicular to the Nèel vector

(hard-axis). In conclusion, our softening does not stem from a simple spin-flop transition.
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Our work is readily applied to other solids, such as other rare-earth orthoferrite or or-

thochromite compounds, where two different magnetic sub-lattices strongly interact with each

other, which host different types of phase transitions (40, 41). One can simulate different types

of Dicke models or explore novel quantum vacuum phenomena at or in the SR phase by ju-

diciously choosing candidate materials. We suggest two necessary conditions that must be

satisfied for this analogy to be valid as a general guidance. First, one should find evidence that

g exhibits the Dicke cooperative enhancement (g ∝
√
N ). Second, at the superradiant phase

boundary, one should find a simultaneous change in two magnetic sub-lattices that can be re-

vealed by a kink and softening in spectroscopic measurements. Theoretical mapping of a spin

Hamiltonian into Dicke models should be possible.

Conclusion

We observed the spectroscopic signatures of the magnonic SRPT in ErFeO3 in thermal equilib-

rium. Our work demonstrates the long-sought SRPT predicted by Hepp and Lieb in the Dicke

model without the A2 term (9) The magnon–spin system opens up the possibilities to explore

novel quantum vacuum phenomena predicted in the superradiant phase. At the superradiant

phase boundary of the Dicke model, a two-mode ground-state becomes perfectly squeezed (23).

This suggests that ErFeO3 in a magnetic field offers a unique opportunity to achieve large-scale

quantum entanglement essential for quantum information science, intrinsically robust against

external noise – equilibration with the thermal bath provides a passive “error correction” of

decoherence events. Furthermore, our work provides insights into achieving photonic SRPTs

through an exchange pathway, as well as a novel way to discover and control condensed matter

phases based on powerful concepts developed in quantum electrodynamics.
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Fig. 1. Comparison between a light–matter system and a magnon–spin system for the

Dicke superradiant phase transition (SRPT). (A) (Top panel) A light–matter hybrid sys-

tem with coupling strength g realized in a single-mode cavity with frequency ω0 containing

an ensemble of two-level atoms with transition frequency ωa. (Bottom panel) A magnon–spin

hybrid system realized in ErFeO3. A single-mode magnon excitation of Fe3+ (an ensemble of

Er3+ spins) plays the role of single-mode cavity photons (two-level atoms) in the Dicke model.

(B) Normalized frequencies of the upper-polariton (ω+) and lower-polariton (ω−) modes as a

function of g/ω0 calculated using the Dicke model without (red solid lines) and with (black

dashed lines) the A2 term at zero-detuning (ω0 = ωa). When the lower-polariton frequency

reaches zero, an SRPT occurs between the normal (N) and superradiant (SR) phases. With

the A2 term, the lower-polariton frequency asymptotically approaches zero in the g/ω0 → ∞

limit, thereby forbidding the SRPT. (C) Normalized frequencies of the upper-polariton (ω+) and

lower-polariton (ω−) modes as a function of ωa/ω0 calculated using the Dicke model without

the A2 term with g/ω0 = 0.1. When the lower-polariton frequency reaches zero, the system

crosses the phase boundary.
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Fig. 2. Spectroscopic evidence for the magnonic SRPT in ErFeO3. (A) A schematic of the

magnetic structure of ErFeO3 in the Γ12 or superradiant phase (T < T Er
N ). Er3+ spins (blue

vectors) become antiferromagnetically aligned at low temperatures, while the Néel vector of

the Fe3+ spins rotates toward the b axis. (B) Spin dynamics of the qAFM of Fe3+ spins and

Er3+ spins in the Γ12 phase triggered by a THz magnetic field polarized along the a axis. The

magnitude of the net magnetization (MFe and MEr) oscillate (black box). The Fe3+ spins are

ordered along the c axis and cant toward the a axis (β = 8.5 mrad). The plane where the Fe3+

spins lie is θ = 49° off from the ac plane. (C) (Top panel) Absorption coefficient spectra as a

function of magnetic field in THz-TDS, showing a kink in the upper-polariton. Here the maxi-

mum (minimum) value is 60 cm−1 (0 cm−1). (Two middle panels) Temperature spectra in the
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sample upon CW GHz illumination with a base temperature of 2 K. The maximum temperature

change is less than 90 mK. Here all spectra are scaled from 0 to 1. (Bottom panel) Negative

transmission spectra. Here all spectra are scaled from 0 to 1. The GHz spectra in the bottom

three panels show a softening in the lower-polariton frequency, which together with the kink in

the upper-polariton mode, demonstrates the magnonic SRPT; see Fig. 1C.
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Materials and Methods

Sample preparation

Polycrystalline ErFeO3 was first synthesized by a conventional solid-state reaction method us-

ing Er2O3 (99.9%) and Fe2O3 (99.98%) powders. According to the stoichiometric ratio, the

original reagents were weighed carefully and pulverized with moderate anhydrous ethanol in

an agate mortar. Mixtures were sintered at 1300 °C for 1000 minutes and then cooled to room

temperature. The sintered powders were thoroughly reground and pressed into a rod that is

70 mm in length and 5 - 6 mm in diameter by a Hydrostatic Press System (Riken Seiki CO. Ltd,

model HP-M-SD-200) at 70 MPa, and then sintered again at 1300 °C for sufficient reaction.

Single crystal samples were then grown by an optical floating zone furnace (FZT-10000-H-

VI-P-SH, Crystal Systems Corp; heat source: four 1 kW halogen lamps). Conditions like the

melting power and the rate of sample rotation were stabilized and controlled in the molten zone.

Gigahertz magnetospectroscopy
Thermal detection of electron paramagnetic resonances in static magnetic fields under
GHz radiation

We performed GHz magnetospectroscopy measurements in the Voigt geometry as we described

in the main text. Figure S1A shows our setup used for thermal detection of magnetic resonances

of Er3+ spins. We generate GHz continuous waves (CW) using a diode (70 - 110 GHz, 25 mW,

Virginia diode, WR10SGX). For the frequency range (140 - 220 GHz), a frequency multiplier

(3.2 mW, WR5.1x2) was added. The GHz radiation was collimated by a 90° off-axis parabolic

mirror and shined on the sample to ensure that the whole area of the sample (4 mm in diameter)

was uniformly illuminated. A wire-grid polarizer was used to define the GHz magnetic field

polarization. The c-cut sample (800-µm-thick) was placed in a dry magneto-optical cryostat

(Quantum Design, OptiCool) at 2 K and static magnetic fields µ0H ∥ a up to 6 T. A temperature
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sensor was located about 5 mm far from the sample and they sit on the same Cu plate. For each

fixed frequency, we swept the magnetic fields to 6 T with the step size of 0.02 T. At each

magnetic field, we waited for 5 s for the temperatures to be stabilized. We selected frequencies

that show a temperature change of 30 mK < ∆T < 90 mK at the peak temperatures.

Figure S1B shows an example of the thermal detection. With 90 GHz illumination, as we

increase the magnetic field, the sample temperature increases at some magnetic fields. This

is because when the incident photon energy coincides with the transition energy of the spin

resonances, non-radiative electron relaxation emitting phonons can happen, thereby increasing

the lattice temperature. This technique has been used for observing cyclotron resonances in the

microwave regime (42). One of the advantages of using this method over the transmission mea-

surement is that one can avoid the notorious standing wave effects that make the transmission

curve more complicated.

Figure S2A shows the measured curves at 2 K through this method with frequencies ranging

from 74 to 172 GHz which are 0-to-1 scaled. These data are used to generate the middle two

panels in Fig. 2C. Above 95 GHz, side peaks appear around 1.5 T. They are hybridized modes

of the Er3+ mode and a Fabry-Pérot cavity mode defined by the crystal itself (43). For 10 K

measurements, this method does not work since the cryostat can maintain the temperature at

10 K even with GHz radiation. At 2 K, however, the cryostat is using its maximum cooling

capability, and thereby any additional thermal load results in increases in the temperature.

Transmission in a pulsed magnetic field

High-magnetic field electron paramagnetic resonance (EPR) measurements in pulsed magnetic

fields with fixed frequencies ranging from 33 to 71 GHz and 63 to 190 GHz were performed

in the temperatures at 2 and 10 K, respectively. Pulsed magnetic fields up to 5 T were applied.

Magnetic fields were applied parallel to the a axis. All curves have been 0 to 1 re-scaled.
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At 2 K, we were able to observe the resonances in transmission spectra since the sample

used for the pulsed magnetic field experiment was thinner (200 µm) than the incident wave-

lengths, allowing us to avoid the standing waves effect inside the sample; Fig. S2A. Note that

the dielectric constant of ErFeO3 is about 30. These data are used to generate the bottom panel

in Fig. 2C. Figure S2B shows transmission spectra at 10 K. These data are used in Fig. 3B (right

panel). Here, since the thermal energy of 10 K (208 GHz) is higher than the transition energies,

the population in the upper level is high and thereby the transmission changes are minute. This

results in the high background noise at low frequencies after we do the 0-to-1 normalization.

Terahertz magnetospectroscopy
Setup description

We performed THz time-domain magnetospectroscopy (THz-TDMS) measurements in the Voigt

geometry as we described in the main text. The b-cut sample (1162-µm-thick) is placed in a dry

magneto-optical cryostat (Quantum Design, OptiCool) with variable temperatures T between 2

and 300 K and static magnetic fields µ0H up to 7 T. We generate THz pulses via optical recti-

fication using a Ti:sapphire amplifier (795 nm, 0.2 mJ, 40 fs, 1 kHz, Spectra-Physics, Spitfire

Ace Pro XP) as a laser source that pumps a 1-mm-thick (110) zinc telluride (ZnTe) crystal,

while detection is accomplished through electro-optical sampling in another ZnTe crystal with

the same thickness.

Index of Refraction and Absorption Coefficient

We extracted the absorption coefficient spectra using complex indices of refraction of a sample

obtained by THz-TMDS (21). We define Ẽ0(ω) as the Fourier transform of an incoming THz

pulse E0(t) illuminated on a homogeneous dielectric slab of thickness d (the sample thickness).

We neglected the ghost reflections from the backside of the sample (the Fabry-Pérot effect) since

they are well separated in time-domain from the main transmitted THz pulse and excluded in
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our analysis. We define the THz electric field transmitting with and without the sample as the

sample electric field Ẽs(ω) and reference electric field Ẽr(ω), respectively. Each transmitted

electric field can be written as (44, 45):

Ẽr(ω) = t̃13(ω)P̃air(ω, d)Ẽ0(ω) (11)

Ẽs(ω) = t̃12(ω)P̃s(ω, d)t̃23Ẽ0(ω) (12)

where t̃jk =
2ñj

ñj+ñk
is the complex Fresnel transmission coefficient between mediums j and k,

P̃j(ω, dj) = eik0dj ñj = ei(ωdj/c)ñj is the propagator through medium j, and the subscripts air, r,

and s refer to air, reference, and sample, respectively. The ratio between Ẽr(ω) and Ẽs(ω) is the

transfer function H̃(ω), and it follows from Eqs. 11 and 12 that:

H̃(ω) =
Ẽs(ω)

Ẽr(ω)
=

t̃12t̃23

t̃13

P̃s(ω, d)

P̃air(ω, d)
=

2ñ2(ñ1 + ñ3)

(ñ1 + ñ2)(ñ2 + ñ3)
ei(ωd/c)(ñs−1) (13)

Since we are dealing with a bulk sample that does not have any substrate, the surrounding

mediums can be taken as air by setting ñ1 = ñ3 = 1 in Eq. 13. With this simplification,

the pre-factor before the exponential term becomes 4ñs
(ñs+1)2

with ñ2 = ñs. Furthermore, we set

ñs = ns(ω) for t̃jk and solve Eq. 13 for ñs = ns(ω)+iκs(ω) in the exponential term. Here, ns(ω)

is the index of refraction of the sample, and κs(ω) its extinction coefficient. This approximation

is based on the fact that the absorption at the sample surface is negligible compared to the

exponential term. We obtain:

H̃(ω) =
4ns(ω)

(ns(ω) + 1)2
ei(ωd/c)(ñs−1) =

4ns(ω)

(ns(ω) + 1)2
ei(ωd/c)(ns(ω)−1)e−(ωd/c)κs(ω) (14)

The magnitude and argument of Eq. 14 read:

arg[H̃(ω)] =

(
ωd

c

)
(ns(ω)− 1) → ns(ω) = 1 +

c

ωd
arg[H̃(ω)] (15)

|H̃(ω)| = 4ns(ω)

(ns(ω) + 1)2
e−(ωd/c)κs(ω) → κs(ω) = − c

ωd
ln

[
(ns(ω) + 1)2

4ns(ω)
|H̃(ω)|

]
(16)
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Then the absorption coefficient α(ω) reads as follow:

α(ω) =
2ω

c
κ(ω) = −2

d
ln

[
(ns(ω) + 1)2

4ns(ω)
|H̃(ω)|

]
(17)

To summarize, from Ẽr(t) and Ẽs(t), obtained in this work, the transfer function H̃(ω) can be

calculated as Ẽs(ω)/Ẽr(ω), and n(ω) and α(ω) follow from Eqs. 15 and 17, respectively.
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Supplementary Text

THz absorption spectra at high temperatures

Figure S3A shows temperature-dependent absorption spectra of qAFM of Fe3+ spins. The kink

occurs at 4 K which is the superradiant phase boundary at 0 T. Below this temperature, the Fe3+

order parameter ⟨SA/B
y ⟩ becomes finite. Figure S3B shows magnetic field dependence of qAFM

of Fe3+ spins. At 10 K, only a slight change was observed at low magnetic fields without any

signature of the phase transition, consistent with our phase diagram. Meanwhile, two modes

that emerge at high fields are Er3+ EPR modes. As described in the main text, ErFeO3 can

be modeled by the two-sublattice model. This implies we should expect four modes in total:

quasi-ferromagnetic (qFM) mode and qAFM for Fe3+ spins, and in-phase and out-of-phase

EPR modes for Er3+ spins. Here, we are considering the relative phase of precession of two

Er3+ spins. A detailed derivation follows in the next section and can be found in Ref. (18). Our

theory finds the lowest mode is the out-of-phase mode that is coupled to qAFM, establishing a

magnon-spin system. Due to the polarization selection rule described in Fig. 2B, the qFM mode

does not appear in this plot.

Superradiant phase transition at finite detuning

An anti-crossing of two polaritons occurs at the zero-detuning point (ω0 = ωa). When the

normalized coupling strength (η ≡ g/ω0) reaches the critical value of 0.5, the system undergoes

the SRPT, and ω− becomes zero. As shown in Fig. S4A, for η = 0.5 the SRPT occurs when

ω0 = ωa. For η = 0.1 (Fig. S4B), a situation more comparable to ErFeO3, we find the phase

boundary moves to the ωa < ω0, while the anti-crossing still occurs at the zero-detuning point.

Thus one can achieve the SRPTs with a small η as long as ν ≡ ωa/ω0 is small enough to satisfy

the inequality (1) in the main text. By contrast, when ν > 1, the ηc becomes higher than 0.5.

30



Resonance frequencies from the spin model

We calculate the resonance frequencies from the spin Hamiltonian with the method of Ref. (18).

The Heisenberg equations of motion of the twelve spin operators are

ℏ
dss

dt
= −ss × gErµBB

s
Er(s

A/B,SA/B), (18)

ℏ
dSs

dt
= −Ss × gFeµBB

s
Fe(s

A/B,SA/B), (19)

dropping the unit cell index due to the assumption that spins are spatially uniform, with s ∈

{A,B}, and Bs
Er (Bs

Fe) the mean-fields for the Er3+ (Fe3+) spins,

Bs
Er = BDC +

2zErJEr

µBgEr
ss̄ +

2

µBgEr

∑
s′=A,B

[
JSs − (Ds,s′ × Ss)−AEr · ss

]
, (20)

Bs
Fe = BDC +

2zFeJFe

µBgFe
Ss̄ − zFe

µBgFe
DFe × Ss̄ +

2

µBgFe

∑
s′=A,B

[
JSs − (Ds,s′ × Ss)−AFe · ss

]
,

(21)

where s̄ is the complementary sublattice of s. Eq. 21 is the same as that in Ref. (18) but Eq. 20

has an additional term coming from the inclusion of the Er3+-anisotropy.

The equations of motion are linearized around the equilibrium mean-fields, B̄s
Er/Fe ≡ BEr/Fe(s̄

A/B, S̄A/B).

These equations of motion correspond to the effective Hamiltonians for the Er and Fe spins

Hs
Er = gErµBs

s · B̄s
Er = gErµBs

s
∥|B̄s

Er| (22)

Hs
Fe = gFeµBS

s · B̄s
Fe = gFeµBS

s
∥|B̄s

Fe|, (23)

where s∥ (S∥) is the spin operator in the direction parallel to the mean-field. The finite-

temperature average of the spin operators then gives the self-consistency equations

⟨ss∥⟩ = − tanh

(
gµB|B̄s

Er|
2kBT

)
(24)

⟨Ss
∥⟩ = −BS

(
SgµB|B̄s

Fe|
kBT

)
, (25)
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where BS(x) =
2S+1
2S

coth
(
2S+1
2S

x
)
− 1

2S
coth

(
x
2S

)
is the Brillouin function.

The linearized equations of motion are thus found to be

ℏ
d

dt
δss = −δss × gµBB̄

s
Er(s

A/B,SA/B)− s̄s × gµBB
s
Er(δs

A/B, δSA/B), (26)

ℏ
d

dt
δSs = −δSs × gµBB̄

s
Er(s

A/B,SA/B)− S̄s × gµBB
s
Er(δs

A/B, δSA/B), (27)

where δss and δSs are the difference of the spin operators and their mean-field values.

Eqs. 26 and 27 are solved to obtain the resonance frequencies. As coupled homogeneous

linear differential equations with constant coefficients they are solved by δss = ss(0)eiω
s
Ert and

δSs = δSs(0)eiω
s
Fet, where the frequencies ω and corresponding normal modes are found by

solving a set of linear equations, iωs = Ms, where s = (sA, sB,SA,SB) and M is an anti-

Hermitian matrix. The imaginary part of the eigenvalues of M are the resonance frequencies.

Model fitting

Most model parameters are taken from previous literature, including all Fe-Er interaction pa-

rameters and most of the Fe3+ subsystem. We fit other model parameters, summarized in Tab. 1.

Where previously parameters are available, our fits are consistent with prior work.

We use the large majority of Ref. (18)’s model parameters for Fe3+ subsystem, adjusting only

Az and gFe
x . We also use that reference’s b- and c-axis Er3+ g-factors along b and c axes. They

are listed without uncertainty in Tab. 1. We follow the notation and parametrization in (18).

We adjust some model parameters that earlier experimental data was fairly insensitive to –

mainly parameters of the Er3+ subsystem, and introduce a new parameter, the anisotropy energy

of the Er3+ spins. We fit the model parameters to match the experimentally obtained THz and

GHz magnetospectroscopy resonance positions by minimizing the cost function

C =
∑
i

wi

Ni

∑
j∈i-th curve

(fij − f̃ij)
2

f̃ 2
ij

, (28)
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Fe3+ subsystem Er3+ subsystem Fe3+–Er3+ interaction
JFe = 4.96meV JEr = 0.01328(5)meV J = 0.6meV

DFe
y = −0.107meV ax = 0.124(4)meV Dx = 0.034meV
Ax = 0.0073meV az = 0.1480(3)meV Dy = 0.003meV

Az = 0.0176(3)meV axz = 0meV
Axz = 0meV gEr

x = 4.16(8)
gFe
x = 3.5734(3) gEr

y = 3.4
gFe
y = 2 gEr

z = 9.6
gFe
z = 0.6

Table 1: Mean field model parameters from fitting and (18). Listed parameter uncertainties are
errors of fit, determined by the method in (46).

where i indexes the dataset that is fit to (there are five sets: four spectral modes versus H and

the H = 0 critical temperature, as described below), and Ni is the number of experiment data

points in the i-th curve. wi is the weight assigned to the i-th curve (described below), but fits

are relatively insensitive to this choice; j indices experiment data points in the i-th dataset; and

fij and f̃ij are the calculated and measured observables frequencies of i-th mode at j-th data

point, respectively.

The five datasets are the four spectral mode frequencies as a function of H , and the H = 0

critical temperature. For the first four datasets, f̃ij is the resonance frequency of mode i and fij

is the mean field calculation of that mode at the H and T values corresponding to measurement

j. The fifth “dataset" is simply the temperature at which ω+ has a cusp. We weigh most datasets

with 0.2; the exceptions are the Fe3+ mode, with its critical softening, we weigh slightly more,

with weight 0.3, and the Er+ slightly less, with weight 0.1.

Figures S5A–B and Fig. 3 of the main text compares the mean-field calculations with the

experimenta data they were fit to. Figure S5C shows the predictions for T = 10K using these

parameters (this data was not included in the fit). Tab. 1 presents the obtain model parameters as

quantities with the quoted uncertainties using the method in (46) without including experiment

measurement errors.
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Extended Dicke model

The derivation of the extended Dicke model from the spin Hamiltonian follows “Derivation of

extended Dicke Hamiltonian" of Ref. (18). We briefly outline this here. The spin Hamiltonian

is split in three parts, namely HFe, HEr and HEr-Fe.

First, we rewrite the Fe3+ subsystem in terms of magnon annihilation and creation operators.

The magnons are collective spin-fluctuations above mean-field configuration for the bare Fe3+

subsystem. The ground state is the same as previous studies (18, 20, 26),

S̄A
0 =

 S sin β0

0
−S cos β0

 , S̄B
0 =

S sin β0

0
S cos β0

 (29)

where β0 is the mean-field canting angle of the Fe3+-spins from the a axis (18, 26)

β0 = −1

2
arctan

[
zFeD

y
Fe

zFeJFe − Ax
Fe + Az

Fe

]
. (30)

We neglect the non-diagonal Fe3+-anisotropy term, Axz
Fe .

Spin-wave theory yields (18, 26)

HFe ≈
∑
k=0,π

ℏωka
†
kak + const, (31)

with ωk = gFeµB/ℏ
√

(b cos k − a)(d cos k + c) and

a = [S/(gxFeµB)] [−Az
Fe − Ax

Fe − (zFeJFe + Az
Fe − Ax

Fe) cos(2β0) + zFeD
y
Fe sin(2β0)] (32)

b = [S/(gxFeµB)]zFeJFe (33)

c = [S/(gxFeµB)] [(zFeJFe + 2Az
Fe − 2Ax

Fe) cos(2β0) + zFeD
y
Fe sin(2β0)] (34)

d = [S/(gxFeµB)] [−zFeJFe cos(2β0)− zFeD
y
Fe sin(2β0)] . (35)

The derivation is as is from Ref. (18). First, we compute the Heisenberg equations of motion

of S for HFe. Then we linearize them by expressing SA/B
i = S̄A/B

0 + δSA/B
i . The effective
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Hamiltonian of the linearized equations of motion are decoupled harmonic oscillators. These

harmonic oscillators are the magnons. The spin fluctuations in terms of ladder operators of the

harmonic oscillators are

δSA
i ≈

√
S

2N0

−(T0 − Tπ) cos β0

(Y0 − Yπ)
−(T0 − Tπ) sin β0

 , (36)

δSB
i ≈

√
S

2N0

 (T0 + Tπ) cos β0

(Y0 + Yπ)
−(T0 + Tπ) sin β0

 , (37)

where

Tk =

(
b cos k − a

d cos k − a

)1/4 a†−k + ak√
2

(38)

Yk =

(
d cos k + c

b cos k − a

)1/4 i(a†−k − ak)√
2

. (39)

We only keep k = 0, π contributions, the the qFM and the qAFM modes of Fe3+ respectively,

as there is negligible coupling to the other modes. Henceforth these modes are labeled as aqFM

and aqAFM.

Next, we apply the collective spin approximation on the Er3+-spins,

ssi =
1

N0

N0∑
i=1

ssi (40)

≡ 1

N0

Σs
i , (41)

finding

HEr ≈ gxErµBΣ
+
xB

DC
x + zErJEr

N0∑
i=1

sA
i ·

N0∑
i′=1

sB
i′

N0

−
∑
i

∑
ξ=x,z

Aξ
Er

∑
s=A,B

(
1

N0

∑
j

ssj,ξ

)2

(42)

= gxErµBΣ
+
xB

DC
x +

zErJEr

N0

ΣA ·ΣB −
∑
s=A,B

∑
ξ=x,z

Aξ
Er

N0

(Σs
ξ)

2, (43)

where Σ±
ξ = ΣA

ξ ± ΣB
ξ .
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Finally, we rewrite HEr-Fe in terms of the spin-fluctuation operators of the Fe3+-spins and

the collective spin operators of Er3+-spins to give

HEr-Fe = 4S(J sin β0 +Dy cos β0)Σ
+
x + (−4SDx cos β0)Σ

−
y +

√
S

N0

[(J cos β0 −Dy sin β0)TπΣ
+
x

(44)

+ JY0Σ
+
y + (Dx sin β0)TπΣ

−
y +DxYπΣ

−
z − (J sin β0 +Dy cos β0)T0Σ

+
z ]. (45)

We have different pre-factors of the parameters compared to Ref. (18) since they have extra

factors of 1/2 as the Er3+-spins are modeled as 1/2σs, whereas we absorb this in our spin

variables ss.

The complete spin-Dicke Hamiltonian, expressed in terms of the magnonic operators and

collective Er3+-spin operators is

HDicke ≈
∑

m:{qFM,qAFM}

ℏωma
†
mam + ExΣ

+
x + EyΣ

−
y + µBg

x
ErB

DC
x Σ+

x +
zErJEr

N0

ΣA ·ΣB

−
∑
ξ=x,z

∑
s=A,B

Aξ
Er

N0

(Σs
ξ)

2 +
gx√
N0

(
a†qAFM + aqAFM

)
Σ+

x +
igy√
N0

(
a†qFM − aqFM

)
Σ+

y

+
gy′√
N0

(
a†qAFM + aqAFM

)
Σ−

y +
igz√
N0

(
a†qAFM − aqAFM

)
Σ−

z +
gz′√
N0

(
a†qFM + aqFM

)
Σ+

z .

(46)

Ex = 4S(J sin β0 +Dy cos β0), Ey = −4SD cos β0 and the five coupling strengths are

gx =
√
xS (J cos β0 −Dy sin β0)

(
b+ a

d− c

)1/4

(47)

gy =
√
xSJ

(
d+ c

b− a

)1/4

(48)

gy′ =
√
xSDx sin β0

(
b+ a

d− c

)1/4

(49)

gz =
√
xSDx

(
d− c

b+ a

)1/4

(50)

gz′ =
√
xS (−J sin β0 −Dy cos β0)

(
b− a

d+ c

)1/4

. (51)

x = tanh
[
|Ex+µBgxErB

DC
x |

2kBT

]
is the spin-dilution factor that incorporates the effect of temperature.
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Figure S1: Thermal detection of magnetic resonances of Er3+ spins. (A) A schematic of the

setup for thermal detection. (B) The sample temperature as a function of the static magnetic

field with 90 GHz illumination. When the incident photon energy coincides with the transition

energy of magnetic resonances, the temperature increases.
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Figure S2: Raw data of GHz measurements with 0-to-1 scaled. (A) From 33 to 71 GHz

(74 to 172 GHz), transmission (temperature) spectra as a function of the magnetic field at 2 K.

These data are used to generate the two middle panels and the bottom panel in Fig. 2C. (B) From

63 to 190 GHz, transmission spectra as a function of the magnetic field at 10 K. Red triangles

indicate the resonance peak positions that are used in Fig. 3B (red circles).
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Figure S3: Terahertz absorption coefficient spectra (A) Absorption coefficient spectra as a

function of temperature in THz-TDS, showing a kink at the phase boundary. (B) Absorption

coefficient spectra as a function of magnetic field in THz-TDMS. The qAFM mode of Fe3+ and

two Er3+ EPR modes are observed. The out-of-phase mode is plotted in Fig. 3B (right panel).

All three modes are reproduced by our mean-field calculation in Fig. S5C.
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Figure S4: Occurrence of the superradiant phase transition at finite detuning (A) Normal-

ized frequencies of the upper-polariton (ω+) and lower-polariton (ω−) modes as a function of

ωa/ω0 calculated using the Dicke model without the A2 term with g/ω0 = 0.5 and (B) with

g/ω0 = 0.1.
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Figure S5: Comparison between experimental data and fitting results for the extended

data (A) Temperature dependent absorption peaks of Fe3+ ions. (B) Magnetic field dependent

absorption peaks of all four modes at 2 K, and (C) at 10 K. We present our fitting curves in

A and B, and calculations for 10 K in C. The blue circles, red triangles, and red circles in B

are extracted from Fig. 2B, while those in C are from Fig. S3B. The blue triangles correspond

to qFM of Fe3+, obtained from separate experiments with a 90° rotated incident THz magnetic

field polarization.
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Figure S6: In-phase and out-of-phase modes of Er3+ spins below and above the critical temper-

ature, showing shifts only for the 2 K case. Lines (theory), points (experiment).

42



Magnetic field (T)
10 2

0

1

2

Sp
in

 c
om

po
ne

nt
s

3

𝑆!
"/$

𝔰%" − 𝔰%$

Figure S7: Two order parameters evidencing the magnonic SRPT calculated at 2 K.
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