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Ultracold polar molecules uniquely combine a rich structure of long-lived internal states with
access to controllable long-range, anisotropic dipole-dipole interactions. In particular, the rotational
states of polar molecules confined in optical tweezers or optical lattices may be used to encode
interacting qubits for quantum computation or pseudo-spins for simulating quantum magnetism.
As with all quantum platforms, the engineering of robust coherent superpositions of states is vital.
However, for optically trapped molecules, the coherence time between rotational states is typically
limited by inhomogeneous light shifts. Here we demonstrate a rotationally-magic optical trap for
RbCs molecules that supports a Ramsey coherence time of 0.78(4) seconds in the absence of dipole-
dipole interactions. This extends to > 1.4 seconds at the 95% confidence level using a single spin-echo
pulse. In our magic trap, dipolar interactions become the dominant mechanism by which Ramsey
contrast is lost for superpositions that generate oscillating dipoles. By changing the states forming
the superposition, we tune the effective dipole moment and show that the coherence time is inversely
proportional to the strength of the dipolar interaction. Our work unlocks the full potential of the
rotational degree of freedom in molecules for quantum computation and quantum simulation.

The rotational states of polar molecules, together
with their controllable dipole-dipole interactions, may
be used to encode and entangle qubits [1–8], qudits [9],
pseudo-spins [10–18], or synthetic dimensions [19–22].
So far, this capability has been exploited to study
spin-1/2 XY models in a range of geometries [23–28],
and to engineer iSWAP gates that prepare pairs of
tweezer-confined molecules in maximally-entangled Bell
states [25, 26]. Such experiments rely upon the precise
control of molecule position that comes from using optical
lattices and tweezer arrays. However, spatially-varying
and state-dependent light shifts in these traps generally
produce a dominant source of decoherence, severely re-
stricting the duration of coherent quantum dynamics.

‘Magic-wavelength’ traps have been an invaluable tool
in engineering atomic [29] and molecular [30] clocks that
are insensitive to light shifts. The general method being
to choose a trap wavelength such that the polarisabil-
ity of the target states are the same. However, achieving
long coherence for rotational states in ultracold molecules
has proved difficult, due to the anisotropic interaction
with the trap light. The resulting differential light shifts
lead to unwanted shifts in the frequency of the rotational
transition across the trap. The only implementation of a
magic-wavelength trap for rotational transitions has been
in fermionic 23Na40K molecules [31]. In this case, coher-
ence was limited to ∼ 1ms by inhomogeneities in the dc
electric field that was also required as part of the scheme.
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Recent experiments using 23Na87Rb molecules in a near-
magic optical lattice reported single-particle rotational
coherence times of 56(2)ms [28]. Other attempts to pro-
duce rotationally-magic traps have sought to match po-
larisabilities by tuning either the polarisation [24, 32–35]
or intensity [36] of the trap light. Here however, residual
differential light shifts may still occur due to hyperfine
couplings that are quadratic in intensity [37]. Microwave
pulse sequences can be designed to minimise the effects
of single-particle dephasing resulting from small residual
light shifts or electric field inhomogeneity, for example.
Most notably spin echo [23, 24] or XY8 [25, 27] sequences
have been used. To date, the longest rotational coher-
ence time reported without rephasing is 93(7)ms for sin-
gle CaF molecules confined to optical tweezers with the
polarisation set to a magic angle; this was extended to
470(40)ms using a spin-echo sequence [34].

In this article, we report second-scale rotational coher-
ence times in a dilute gas of optically-trapped 87Rb133Cs
molecules (hereafter RbCs). We engineer a magic-
wavelength trap by tuning the frequency of the trap light
in the vicinity of a forbidden molecular transition. We
observe a Ramsey coherence time of 0.78(4) s that is lim-
ited primarily by the stability of the trap laser frequency
in a state configuration without dipole-dipole interac-
tions. Introducing a single spin echo pulse, we observe
no loss of rotational coherence over 0.7 s and estimate
a minimum coherence time of > 1.4 s at the 95% con-
fidence level. We show that with all other sources of
decoherence eliminated, dipolar interactions become the
dominant source of decoherence for superpositions that
generate oscillating dipoles. We control the strength of
these interactions by changing the states forming the su-
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perposition. We demonstrate that the coherence time
is inversely proportional to the strength of the resonant
dipole-dipole interactions.

We start by preparing a thermal gas of ultracold RbCs
molecules in their lowest rotational state in an opti-
cal trap (see Methods). We typically produce around
∼ 2400 molecules at a temperature of 1.5µK, and esti-
mated peak density of 6×1010 cm−3. We use resonant mi-
crowave fields that couple to part of the molecule-frame
dipole moment d0 = 1.23D [38] to coherently trans-
fer the molecules between the rotational states shown
in Fig. 1(a). We label the states used in this work by
|0⟩ ≡ (N = 0,MN = 0), |1⟩ ≡ (1, 0), |1̄⟩ ≡ (1, 1),

|2̄⟩ ≡ (2,−1), and |2̂⟩ ≡ (2, 2). Here, N describes the ro-
tational angular momentum, and MN denotes the dom-
inant projection along the quantisation axis. All these
states have the same dominant nuclear spin projections
ofmRb = 3/2 andmCs = 7/2. For a complete description
of the state compositions see Supplementary Section I.

Optical trapping relies upon light with intensity I
interacting with the dynamic polarisability of the
molecule α, such that there is a perturbation in en-
ergy −αI/(2ϵ0c) where ϵ0 is the permittivity of free
space and c is the speed of light. Because diatomic
molecules are not spherically symmetric, the polaris-
ability along the internuclear axis, α∥, is different from
that perpendicular to the axis, α⊥, with the two po-
larisabilities arising from electronic transitions in the
molecule with different symmetries [39, 40]. This re-
sults in a molecular polarisability that depends on the
orientation of the molecule and can be separated into an
isotropic α(0) and anisotropic α(2) component such that
α(θ) = α(0) + α(2)(3 cos2 θ − 1)/2. Here, θ is the angle
of the laser polarisation with respect to the internuclear
axis, α(0) = (α∥ + 2α⊥)/3 and α(2) = 2(α∥ − α⊥)/3.
The presence of the anisotropic component leads to a po-
larisability and therefore light shifts that are dependent
on the rotational angular momentum N , the projection
along the quantisation axis MN , and the angle between
the trap laser polarisation and the quantisation axis [41].

To produce a rotationally magic trap we tune the value
of α(2) to be zero. This is achieved by trapping with
light at a wavelength of 1145 nm following a scheme pro-
posed by Guan et al. [42]. We tune the laser frequency
to be between transitions to the v′ = 0 and v′ = 1 vibra-
tional states of the mixed b3Π potential, as indicated in
Fig. 1(b). Transitions to this potential are nominally for-
bidden from the X1Σ+ ground state, but may be driven
due to weak mixing of b3Π with the nearby A1Σ+ po-
tential. Coupling to A1Σ+ components allows α∥ to be
tuned by varying the frequency of the trapping light, with
poles in the polarisability occurring for each vibrational
state in the b3Π potential, as shown in Fig. 1(c). Mean-
while, α⊥ remains nearly constant as the light is red-
detuned by ∼ 100THz from the bottom of the nearest 1Π
potential. By setting α∥ = α⊥ with the laser frequency,
the polarisability of the molecule becomes isotropic such
that α(2) = 0 and α(0) = α⊥. In Fig. 1(d,e) we show the

effect of tuning the laser frequency on the optical poten-
tials experienced by molecules in states |0⟩ and |1⟩. The
magic condition where the polarisability, and therefore
the optical potential, is the same for molecules in either
state occurs at a laser detuning of ∼ 186GHz from the
transition to the v′ = 0 state.

To identify the magic detuning experimentally, we per-
form Ramsey interferometry as shown schematically in
Fig. 2(a). For a given pair of states, we fix the Ram-
sey time and measure the contrast of a Ramsey fringe
as a function of the laser detuning (see Methods). We
observe a peak in the fringe contrast when the trap light
is tuned to be magic as shown in Fig. 2(b,c), indicating
that the coherence time for that particular combination
of states has been maximised. There is a small ∼ 1GHz
variation in the magic detuning that depends upon the
states chosen and the polarisation of the trap light; this
is due to the light coupling to different rotational levels
of the excited vibrational states [2, 42]. The width of the
feature we observe depends on the sensitivity of the dif-
ferential light shift to the laser frequency, and is inversely
proportional to the Ramsey time used.

Tuning close to a molecular transition to access a magic
wavelength could potentially lead to loss of molecules due
to photon scattering. However, we find that our method
is compatible with long trap lifetimes. To estimate the
scattering rate due to the 1145 nm light we examine loss
of molecules prepared in |0⟩ from the trap. We begin
our measurement after a hold time in the trap of 0.4 s
such that the density of molecules is relatively low and
collisional losses [44, 45] are therefore reduced. We com-
pare the loss from the magic-wavelength trap with loss
observed when the trap light wavelength is changed to
1064 nm, with the intensity set such that the molecules
experience the same trap frequencies. The results of both
measurements are shown in Fig. 3(a), with fits from a
model assuming exponential decay (see Supplementary
Section II). We observe similar loss rates, corresponding
to lifetimes on the order of ∼ 1 s in both traps. As-
suming the photon scattering rate in the 1064 nm trap
is negligible, we estimate an upper limit on the photon
scattering rate in the 1145 nm trap of < 0.23 s−1 at the
95% confidence level. In other work [2], we have charac-
terised the linewidths of the relevant transitions, with
the closest having linewidths Γv′=0 = 3.7(4) kHz and
Γv′=1 = 2.4(3) kHz. Therefore, the trap light is effec-
tively far detuned, with the ratio of the laser detuning to
the linewidth of the nearest transition ∆/Γv′=0 ≈ 5×107.
It follows that loss due to photon scattering is not an is-
sue for our magic-wavelength trap.

When molecules are prepared in superpositions of ro-
tational states that are connected by dipole-allowed tran-
sitions, they exhibit an oscillating dipole moment in the
lab frame. The resultant dipole-dipole interactions can
significantly affect the rate of collisional loss of molecules
from the trap [44]. In Fig. 3(b) we compare the loss from
the magic trap as a function of time for molecules pre-
pared in either |0⟩, |1⟩ or the superposition 1√

2
(|0⟩+ |1̄⟩).
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FIG. 1. A rotationally-magic trap for ultracold molecules. (a) Relevant rotational and hyperfine states in this work
labelled by (N,MN ). Wavefunctions for each state are shown with phase information for the states used in this work represented
by the color. (b) Electronic structure of RbCs, with the energy corresponding to the 1145 nm wavelength of the trap laser
indicated by the vertical black arrow. (c) By tuning the laser frequency between the transitions to v′ = 0 and v′ = 1 vibrational
levels of the b3Π potential we vary only the component of the polarisability parallel to the internuclear axis of the molecule
α∥. (d) Polarisability for states |0⟩ and |1⟩ as a function of laser detuning from the transition to b3Π(v′ = 0). At a detuning of
0.186 THz the trap is rotationally magic and the polarisability for both states is the same. (e) Schematic of the relative trap
potential for laser detunings such that (i) α|0⟩ < α|1⟩, (ii) α|0⟩ = α|1⟩, (iii) α|0⟩ > α|1⟩.

For the dipolar superposition, we observe a loss rate that
is ×2.5 greater than for molecules prepared in a single ro-
tational state. The interrogation time available for dipo-
lar samples of molecules is therefore significantly shorter
than for non-interacting samples.

We first measure the coherence time for a non-
interacting sample of molecules by examining the coher-
ence between |0⟩ and |2̂⟩; these are two rotational states
not linked by an electric dipole-allowed transition. To
perform Ramsey interferometry on this transition, we
use a pulse sequence composed of one-photon π/2 and π
pulses on the electric dipole-allowed transitions |0⟩ ↔ |1̄⟩
and |1̄⟩ ↔ |2̂⟩ (see Supplementary Section III). We mea-
sure the contrast of the Ramsey fringes as a function of
time, shown by the empty circles in Fig. 4(a). We fit
the results with a Gaussian model for decoherence [34],
where the fringe contrast C(t) = exp[−(T/T ∗

2 )
2], to ex-

tract the 1/e coherence time. From this, we find a coher-
ence time T ∗

2 = 0.78(4) s.

The coherence time we measure is currently limited
by residual ac Stark shifts in the trap as a result of
the light being slightly detuned from the magic wave-
length. The largest source of decoherence comes from
the stability of the trap laser frequency, which we es-
timate to be ±0.76MHz (±1σ) over the duration of a
typical Ramsey fringe measurement (approximately 30
minutes). This results in a variation of the transition
frequency across each fringe measurement of ±0.46Hz,
with a corresponding theoretical limit on the observed
coherence time of 1.1 s. There are additional smaller con-

tributions to decoherence arising from the uncertainty in
the magic laser frequency extracted from the optimisa-
tion curve in Fig. 2(b) with T = 175ms (limit of 4.3 s),
and from a 10MHz difference between the two beams
used to produce the crossed trap (limit of 8.3 s). Details
of how these limits are calculated are given in Supplemen-
tary Section IV. In addition, there is a small differential
magnetic moment between the states of 0.0124µN that
adds an additional limit on the coherence time of 10.6 s
associated with noise in the magnetic field (∼ 10mG).
Combining all contributions provides an expected limit
on the coherence time of 0.74 s, in excellent agreement
with the measured value. Up to an order of magnitude
improvement in the coherence time may be achieved by
using a better method of laser frequency stabilisation;
for example, referencing the light to a high finesse opti-
cal cavity would result in a frequency stability of below
100 kHz [46].

We remove most of the effects of these residual light
shifts by introducing a single spin-echo pulse in the mid-
dle of the Ramsey time; this is an effective π pulse be-
tween |0⟩ and |2̂⟩ that reverses the direction of procession
around the Bloch sphere, thereby cancelling out contri-
butions to single particle dephasing from static inhomo-
geneities. The result is shown by the filled circles in
Fig. 4(a). We now observe no loss of fringe contrast over
0.7 s. We do not measure Ramsey fringes for times longer
than this due to loss of molecules from the trap dimin-
ishing the signal-to-noise ratio. There is a shift in the
phase of the Ramsey fringe as a function of Ramsey time
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FIG. 2. Optimising coherence time in the magic trap.
(a) Bloch sphere representation of the Ramsey interferome-
try sequence. For each step the dotted and solid red arrows
represent the initial and final Bloch vector respectively. Solid
black arrows indicate the axis about which the Bloch vector
is rotated using coherent π/2 pulses performed on microwave
transitions between the neighbouring rotational states. In
the example shown, a π/2 pulse first prepares the molecules
in an equal superposition of states 1√

2
(|0⟩ + |1⟩). This is

then allowed to freely evolve for a time, T . Finally a sec-
ond π/2 pulse with variable phase Φ is used to project back
onto the |0⟩ state for detection. Ramsey fringes are ob-
served as a variation in molecule number Nmol in state |0⟩
as a function of Φ. (b) Fringe contrast as a function of trap
laser detuning from the transition to b3Π(v′ = 0) for state
combinations and Ramsey times (i) 1√

2
(|0⟩ + |1⟩), T = 20 ms;

(ii) 1√
2
(|0⟩ + |1̄⟩), T = 30 ms; (iii) 1√

2
(|1⟩ + |2̄⟩), T = 30 ms.

Results for the combination (iv) 1√
2
(|0⟩ + |2̂⟩) are shown for

Ramsey times of T = 40 ms (empty circles) and T = 175 ms
(filled circles). The lines show Gaussian fits to each of the
results to identify the magic detuning. (c) Example Ramsey
fringes for case (i); the molecule number detected in state |0⟩
is plotted as a fraction of the total number N tot

mol.

that is quadratic (see Supplementary SectionV). This
may be explained by a small imperfection in the spin-
echo rephasing, but does not lead to any appreciable loss
of coherence. Fitting to the results using the Gaussian
model for decoherence, we estimate a minimum coher-
ence time consistent with our results to be T ∗

2 > 1.4 s
at the 95% confidence level. This result represents the
elimination of all decoherence at the detectable precision
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FIG. 3. Collisional loss of molecules from the trap.
(a) Comparison of molecule loss in the magic trap compared
to an equivalent trap using light with wavelength of 1064 nm.
(b) Comparison of loss from the trap for molecules prepared
in either |0⟩ or |1̄⟩ with the superposition 1√

2
(|0⟩ + |1̄⟩). Ex-

ponential fits are shown to all results.

of our current experiment.
For superpositions of rotational states that lead to os-

cillating molecular dipoles, dipolar interactions also cause
dynamics of Ramsey contrast, and therefore introduce
an additional source of decoherence. The dipole-dipole
interactions in the system are described by the Hamilto-
nian [14, 15, 47]

ĤDDI =

1

2

∑
i ̸=j

1− 3 cos2 Θij

r3ij

(
d̂
(i)
0 d̂

(j)
0 +

d̂
(i)
1 d̂

(j)
−1 + d̂

(i)
−1d̂

(j)
1

2

)
(1)

where d̂0, d̂1, ˆd−1 are spherical components of the dipole
operator, Θij is the angle between the vector connect-
ing two molecules and the quantisation axis, and rij is
the inter-molecular distance. The local spatial configu-
ration of molecules varies across the sample. Moreover
as the molecules are not pinned by an optical lattice,
their configuration is time dependent due to motion of
the molecules around the trap.
We examine the coherence between the states |0⟩

and |1̄⟩ which are connected via a dipole-allowed tran-
sition. An equal superposition of these states produces
a dipole that rotates around the quantisation axis with
magnitude given by the transition dipole moment d0/

√
3.

However, due to the factor of 2 in the denominator of the
final term of Eq. 1, this contributes an effective dipole
d = d0/

√
6 = 0.5D in the lab frame. At the peak densi-

ties in our experiments, this corresponds to a typical in-
teraction strength of ∼ h×2Hz. The Ramsey fringe con-
trast measured as a function of time is shown in Fig. 4(a)
by the blue squares, with (filled) and without (empty) a
spin-echo pulse. We see a dramatic reduction in the co-
herence time measured using either pulse sequence when
compared to the non-interacting case. Moreover, the re-
sults are no longer well described by the Gaussian model
for decoherence. Instead, we fit the results assuming an
exponential decay of fringe contrast C(t) = exp(−T/T ∗

2 ).
We find a 1/e coherence time of T ∗

2 = 89(5)ms without
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FIG. 4. Rotational coherence and dipolar interactions in the magic trap. (a) Fringe contrast as a function of the
Ramsey time for non-interacting 1√

2
(|0⟩ + |2̂⟩) (black circles) and dipolar 1√

2
(|0⟩ + |1̄⟩) (blue squares) superpositions. Empty

markers indicate measurements using a standard Ramsey sequence, and filled markers indicate measurements performed with
the addition of a single spin echo pulse. The non-interacting results are fitted using a Gaussian model for decoherence, and
the dipolar-results fitted assuming an exponential decay in fringe contrast. The blue lines indicate the decay in fringe contrast
from MACE simulations as described in the main text. Uncertainties in the fits and simulations are shown by the shaded
regions. The fringes observed with spin echo at T = 0.7 s are shown inset. Also shown inset is the wavefunction for the dipolar
superposition as a function of time (phase, ϕ). The resultant dipole (white arrow) rotates around the quantisation axis (vertical
black line) at a frequency proportional to the difference in energy δE between the states. (b) Coherence time in the presence
of dipole-dipole interactions. We plot the 1/e coherence time measured with spin echo as a function of the effective lab-frame
dipole moment, tuned by changing the states used in the spin echo sequence. The combinations used are (i) 1√

2
(|1⟩ + |2̄⟩);

(ii) 1√
2
(|0⟩ + |1̄⟩); (iii) 1√

2
(|0⟩ + |1⟩). The fringe contrast as a function of time for each state combination is shown in the top

right inset. The wavefunctions are illustrated with (i) and (ii) yielding dipoles rotating around the quantisation axis, and (iii)
resulting in a dipole that oscillates up and down. The bottom left inset shows the coherence time plotted as a function of the
dipole-dipole interaction strength Uij ∝ 1/d2.

the spin-echo pulse and T ∗
2=157(14)ms using the spin-

echo sequence. Note that the residual ac Stark shifts that
affect the results without spin echo vary depending on the
combination of states; we expect that the uncertainty in
the magic detuning is the dominant source of dephasing
for this combination as collisional losses and dipolar de-
coherence force us to use a shorter Ramsey time in the
optimisation of the trap laser frequency. However, the
difference in coherence time between dipolar and non-
interacting samples that is observed with the spin-echo
pulse can be attributed to the effect of dipole-dipole in-
teractions alone.

We tune the strength of the dipole-dipole interactions
in the sample by using different combinations of states.
In Fig. 4(b) we show the 1/e coherence time measured
with spin echo for three different combinations of states
as a function of their effective lab-frame dipole moments.
Here, the dipole moment is varied from 0.31D to 0.65D,
calculated using the full state compositions given in Sup-
plementary Section I. The laser frequency is set to max-
imise the coherence time for each state combination. As
expected, we see in the inset to Fig. 4(b) that the coher-
ence time is inversely proportional to the magnitude of

the interaction strength Uij ∝ d2, which confirms that
dipolar interactions are the dominant source of decoher-
ence. Moreover, this result demonstrates application of
our magic-wavelength trap to molecules in a range of ro-
tational and hyperfine states, allowing control and tun-
ability of the strength of the dipolar interactions.

We compare the decay of fringe contrast observed in
the experiment to that calculated using the Moving-
Average Cluster Expansion (MACE) method [48] for
molecules fixed in space (See Methods). Losses are in-
cluded in the theory by assuming molecules are lost at
a constant rate independent of other molecules. We use
the 1/e loss time of 0.14(5) s determined from an expo-
nential fit to the experimental results; we measure sim-
ilar loss rates for all three of the dipolar combinations
investigated. Decreases in density from loss noticeably
slow down the dynamics, as shown in Supplementary
Fig. 1(a). Without fitting, using only the measured loss
rates, densities, and trap parameters, the MACE calcula-
tions reproduce the timescale for the decay in the Ramsey
fringe contrast, as well as the dependence on the choice of
state-pair, and the overall monotonic decrease; the result
for 1√

2
(|0⟩+ |1̄⟩) is shown in Fig. 4(a). Some details dif-
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fer, most noticeably that the MACE results predict mod-
estly but systematically shorter timescales and a more
concave dependence on time than the experimental re-
sults. The theory contrast is between the measured echo
and no-echo contrast, and differs from the echo results by
roughly the same factor for all state-pair choices, suggest-
ing a common underlying cause. Molecule motion dur-
ing the dynamics is a likely source. The reasonably good
agreement of MACE calculations and experiment for the
overall timescale of contrast decay, and the dependence of
this timescale on the strength of the dipole-dipole inter-
actions, supports the conclusion that dipole-dipole inter-
actions are the main cause of the contrast decay for state
combinations that generate oscillating molecular dipoles.

In conclusion, we have demonstrated a rotationally-
magic trap for RbCs molecules, where the effects of all ex-
perimentally relevant sources of decoherence may be sup-
pressed, resulting in a coherence time in excess of 1.4 s for
non-interacting rotational superpositions. Crucially, the
magic wavelength is sufficiently far detuned from neigh-
bouring transitions that we observe negligible photon
scattering rates and hence long trap lifetimes. We have
shown that this provides unparalleled access to control-
lable dipole-dipole interactions between molecules. Our
approach of trapping using light detuned from the nom-
inally forbidden X1Σ(v = 0) → b3Π(v′ = 0) transition is
applicable to other bialkali molecules [31, 42].

Our work enables the construction of low-decoherence
networks of rotational states, which are the foundation
for many future applications of ultracold molecules from
quantum computation [1–7, 9] and simulation [10–22],
to precision measurement of fundamental constants [49].
The next step for experiments will be to construct molec-
ular arrays using light at this magic wavelength. For
molecules in optical tweezer arrays, this will enable high-
fidelity quantum gates using resonant dipolar exchange,
either directly between molecules [25, 26] or mediated
via Rydberg atoms [7, 8, 50]. For molecules in opti-
cal lattices, long rotational coherence times can be com-
bined with long lifetimes. For a lattice depth of 20 re-
coil energies, we predict a one-photon scattering rate of
0.006 s−1, corresponding to a lifetime in excess of 100 s.
For molecules in the magic-wavelength lattice, nearest
neighbours will be separated by r = 573 nm, and experi-
ence an interaction strength of h× 343Hz for the largest
effective dipoles explored here (and Θ = π/2). This cor-
responds to a timescale for dipolar spin exchange dynam-
ics of 2.9ms, far shorter than both the coherence time
and the lifetime. Techniques for the production of or-
dered lattice arrays of ground state RbCs molecules have
already been demonstrated [51, 52], and are compatible
with a magic-wavelength lattice. Our work therefore un-
locks the potential of ultracold molecules for simulating
quantum magnetism.
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II. METHODS

A. Production of ground state molecules

We produce ultracold RbCs molecules from a pre-
cooled mixture of Rb and Cs atoms. The atomic mixture
is confined to a crossed optical dipole trap using light
with a wavelength of 1550 nm, with a magnetic field gra-
dient applied to cancel the force due to gravity [53]. To
form molecules, we sweep the magnetic field down across
an interspecies Feshbach resonance at 197G [54]. We
then remove the remaining atoms from the trap by in-
creasing the magnetic field gradient to over-levitate the
atoms, following which the magnetic field gradient is re-
moved. With the exception of the measurements shown
in Fig. 3(a), at this point the molecules are transferred
to the magic trap by ramping the power in the 1145 nm
light on over 30ms, and then the power in the 1550 trap
off over a further 5ms. Finally, we transfer the molecules
to the X1Σ ground state |0⟩ using stimulated Raman adi-
abatic passage [38, 55]. This final step is performed with
the trap light briefly turned off to avoid spatially varying
ac Stark shifts of the transitions. For the measurements
in Fig. 3(a), we increase the power in the 1550 nm trap af-
ter the removal of atoms and transfer to the magic trap
following the ground state transfer. Throughout all of
the measurements shown, the molecules are subject to
a fixed 181.5G magnetic field, and there is no electric
field. To detect molecules in |0⟩, we reverse the asso-
ciation process, breaking the molecules back apart into
their constituent atoms, which we detect using absorp-
tion imaging.

B. Details of the magic trap

The magic trap is formed from two beams, each with a
waist of 50µm, crossing at an angle of 20◦. Both beams
propagate and are polarised in the plane orthogonal to
the applied magnetic field that defines the quantisation
axis. Both beams are derived from the same laser, so
to avoid interference effects, we set a 10MHz difference
in frequency between them. The laser detuning reported
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in Fig. 2(b,c) is the average detuning of the two beams.
The intensities of the beams are not actively stabilised,
but are monitored to ensure they are passively stable to
< 5% variation over the course of each measurement.
The typical trap frequencies experienced by ground state
molecules at the magic detuning are [ωx, ωy, ωz] = 2π ×
[29(1), 144(5), 147(5)] rad s−1. After 15ms in the magic
trap, we measure the temperature of the ground-state
molecules to be 1.5(2)µK using time-of-flight expansion
of the cloud over 6ms.

The frequency of the 1145 nm laser is stabilised using
a scanning transfer cavity lock [56], that is referenced to
a 977 nm laser that is in turn locked to a high finesse
cavity with ultra-low expansion glass spacer [46]. The
lock makes corrections to the laser frequency at a rate
of ∼ 100Hz. This slow feedback rate, together with the
relatively low finesse of the transfer cavity > 400, limits
the frequency stability of the laser in the current experi-
ments.

C. Coherent state control

We use coherent one-photon microwave pulses to per-
form the Ramsey interferometry, during which the trap
light is turned off. The microwave sources are referenced
to a 10MHz GPS clock, and we set the microwaves on
resonance with the desired transition and calibrate the
duration of the pulses using one-photon spectroscopy as
described in [57]. The pulse sequences used in this work
are shown schematically in Supplementary Section II.

D. Analysis of Ramsey fringes

We observe Ramsey fringes as a variation in the
molecule number Nmol detected in state |0⟩ as a func-
tion of the phase difference Φ between the initialisation
and read-out microwave pulses. We fit each measurement
with the function

Nmol(Φ) = N tot
mol(1 + C cos(Φ− Φ0)) (M2)

where N tot
mol is the total number of molecules in the sam-

ple, Φ0 is the phase offset in the Ramsey fringe, and C
is the contrast.

We use a bootstrap fitting algorithm to estimate the
uncertainty in the fringe contrast. For a given fringe
measurement, we randomly sample the measured Nmol

for each value of Φ to build up a new dataset that is the
same size as the original. We fit to this randomly resam-
pled data to extract a coherence time. This process is
repeated 1000 times to build up a distribution of fitted
coherence times, from which we calculate a standard de-
viation that represents the uncertainty in the true value.

E. MACE

We calculate the dynamics of our system us-
ing the Moving-Average Cluster Expansion (MACE)
method [48]. Particle locations are randomly sampled
from the thermal distribution based on the measured trap
parameters, temperature, and particle number, and are
assumed to be fixed for all times at their initial positions.
We calculate the dynamics starting from all molecules in
the |→⟩ state, which is the state (ideally) prepared by the
initial π/2 pulse in the Ramsey spectroscopy sequence.
We simulate the time evolution of the Hamiltonian in
Eq. 1 projected onto the relevant state pair, which is a
spin-1/2 dipolar XX model [14, 15]

H =
J⊥
2

∑
i ̸=j

1

2

1− 3 cos2 θij
r3ij

(
S+
i S−

j + h.c.
)
, (M3)

where r⃗ij = r⃗i − r⃗j is the distance between molecules
i and j, θij is the angle between the quantization axis
and r⃗ij , S±

i are raising/lowering operators, and J⊥ =

−⟨↑ |d1| ↓⟩2 for state pairs with angular momentum pro-

jections differing by ±1, and J⊥ = 2 ⟨↑ |d0| ↓⟩2 for state
pairs with the same angular momentum projection. For
the 1√

2
(|0⟩ + |1̄⟩) state pair, |J⊥ρ

2h | = 2.26Hz where ρ is

the estimated peak density (6× 1010 cm−3). Each simu-
lation is performed to a time just before the second π/2
pulse and then the expectation of Sx =

∑
i S

x
i is calcu-

lated, which is the same as the Ramsey contrast after the
pulse. The MACE method constructs a cluster for each
Sx
i from molecule i and the Nc − 1 other molecules with

the strongest interactions with atom i, where Nc is a con-
vergence parameter of the method. We exactly calculate
⟨Sx

i (t)⟩ of each resulting cluster. To assess convergence,
we have compared the dynamics for Nc = 2, 4, 6, 8, and
10 as shown in Supplementary Fig. 1(b). The results con-
verge quickly with Nc for the simulation times of interest,
and Nc = 6 is used for the results in Fig. 4. The contrast
is expected to be converged within widths of the plotted
lines over most of the time regime shown.
The dynamics of the Ramsey contrast is already

roughly captured if one ignores particle loss, but the loss
has non-negligible quantitative effects, which we include
in our calculations shown in the main text. Molecules
leaving the trap decrease the density, which causes the
contrast to decay more slowly. To include this loss in the
MACE calculations, we assume that molecules are inde-
pendently lost from the trap at a constant rate, consistent
with the measured time-dependence of the particle num-
ber. We take the loss rate to be 0.14(5) s, as determined
experimentally. MACE clusters are built based on the
particle distribution at time t = 0 and do not change
over time. For each cluster, whenever a molecule is lost
we set the interactions between the lost molecule and the
remaining molecules to zero. To propagate the dynamics
after this event, we re-diagonalize the Hamiltonian. This
modestly increases the computational difficulty, but only
by a factor of Nc in the worst case (when all molecules are
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lost during the timescale under consideration). To obtain
good statistics, we average together 10 loss trajectories
of ∼ 2400 molecules each to obtain a stable result. This
reduces the statistical error between runs to a maximum
of 2% over the time scales we are working with.

The error bars on the theoretical calculations presented
in the main text show the result of the experimental un-

certainty of the number of molecules, loss rate, and tem-
perature. For particle number uncertainty, we computed
the Ramsey contrast decay for the ±1σ measured parti-
cle numbers, and did the same for loss rate uncertainty
and temperature uncertainty. These uncertainties were
added together in quadrature to obtain the error bounds
in Fig. 4. Each of these errors are much larger than the
statistical or MACE convergence errors.
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[54] M. P. Köppinger, D. J. McCarron, D. L. Jenkin, P. K.
Molony, H.-W. Cho, S. L. Cornish, C. R. Le Sueur,
C. Blackley, and J. M. Hutson, Production of optically
trapped 87RbCs Feshbach molecules, Phys. Rev. A 89,
033604 (2014).

[55] P. K. Molony, P. D. Gregory, A. Kumar, C. R. Le Sueur,
J. M. Hutson, and S. L. Cornish, Production of ultracold
87Rb133Cs in the absolute ground state: complete charac-
terisation of the STIRAP transfer, ChemPhysChem. 17,
3811 (2016).

[56] S. Subhankar, A. Restelli, Y. Wang, S. L. Rolston, and
J. V. Porto, Microcontroller based scanning transfer cavity
lock for long-term laser frequency stabilisation, Rev. Sci.
Instrum. 90, 043115 (2019).

[57] P. D. Gregory, J. Aldegunde, J. M. Hutson, and S. L. Cor-
nish, Controlling the rotational and hyperfine state of ul-
tracold 87Rb133Cs molecules, Phys. Rev. A 94, 041403(R)
(2016).

https://doi.org/10.1103/PhysRevLett.125.023201
https://doi.org/10.1103/PhysRevA.82.063421
https://doi.org/10.1103/PhysRevA.82.063421
https://doi.org/10.1103/PhysRevLett.109.230403
https://doi.org/10.1103/PhysRevLett.127.123202
https://doi.org/10.1103/PhysRevLett.127.123202
https://doi.org/10.1126/science.abn8525
https://doi.org/10.1088/2058-9565/aaee35
https://doi.org/10.1088/2058-9565/aaee35
https://doi.org/10.1103/PhysRevA.102.053316
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevLett.113.255301
https://doi.org/10.1103/PhysRevA.73.041405
https://doi.org/10.1103/PhysRevA.73.041405
https://doi.org/10.1080/0144235X.2017.1351821
https://doi.org/10.1080/0144235X.2017.1351821
https://doi.org/10.1103/PhysRevA.96.021402
https://doi.org/10.1103/PhysRevA.96.021402
https://doi.org/10.1103/PhysRevA.103.043311
https://doi.org/10.1038/s41467-019-11033-y
https://doi.org/10.1038/s41467-019-11033-y
https://doi.org/10.1103/PhysRevLett.124.163402
https://doi.org/10.1088/1367-2630/17/5/055006
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1103/PhysRevLett.113.195302
https://doi.org/10.1088/1367-2630/ac50ea
https://doi.org/10.48550/arXiv.2303.06126
https://doi.org/10.1103/PhysRevLett.118.073201
https://doi.org/10.48550/arXiv.2303.16144
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1103/PhysRevA.84.011603
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1103/PhysRevA.89.033604
https://doi.org/10.1002/cphc.201600501
https://doi.org/10.1002/cphc.201600501
https://doi.org/10.1063/1.5067266
https://doi.org/10.1063/1.5067266
https://doi.org/10.1103/physreva.94.041403
https://doi.org/10.1103/physreva.94.041403


10

SUPPLEMENTARY INFORMATION:
SECOND-SCALE ROTATIONAL COHERENCE
AND DIPOLAR INTERACTIONS IN A GAS OF

ULTRACOLD POLAR MOLECULES

I. STATE COMPOSITION

Composition of the states used in this work, given in
the uncoupled basis (N,MN ,mRb,mCs), are

|0⟩ ≡ 1.000|0, 0, 3
2 ,

7
2 ⟩

|1⟩ ≡ 0.924|1, 0, 3
2 ,

7
2 ⟩ - 0.370|1, 1,

1
2 ,

7
2 ⟩

+ 0.091|1, 1, 3
2 ,

5
2 ⟩

|1̄⟩ ≡ 1.000|1, 1, 3
2 ,

7
2 ⟩

|2̄⟩ ≡ 0.934|2,−1, 3
2 ,

7
2 ⟩ - 0.220|2, 1,−

1
2 ,

7
2 ⟩

- 0.207|2, 0, 3
2 ,

5
2 ⟩ + 0.168|2, 0, 1

2 ,
7
2 ⟩

- 0.056|2, 2,− 3
2 ,

7
2 ⟩ + 0.055|2, 1, 1

2 ,
5
2 ⟩

+ 0.039|2, 2,− 1
2 ,

5
2 ⟩ - 0.005|2, 2,

1
2 ,

3
2 ⟩

- 0.001|2, 1, 3
2 ,

3
2 ⟩ - 0.001|2, 2,

3
2 ,

1
2 ⟩

|2̂⟩ ≡ 1.000|2, 2, 3
2 ,

7
2 ⟩

Here, each of the coefficients are given to 3 decimal
places, and the dominant contribution in each case has
its coefficient highlighted in bold. The energies and com-
positions of the rotational and hyperfine states are cal-
culated with Diatomic-Py [1].

II. LIFETIME MEASUREMENTS IN FIG. 3(A)

We fit the results in Fig. 3(a) with the exponential
function Nmol(t) = N init

mole
−kt. Here, N init

mol is the number
of molecules present at time t = 0 and k characterises
the rate of loss of molecules from the trap. We extract a
loss rate of k1145 = 0.61(5) s−1 with 1145 nm light, and
k1064 = 0.56(7) s−1 with 1064 nm light. This is consistent
a rate of loss that is not dependent on the wavelength.
To estimate the upper limit to the photon scattering rate
that is given in the main text, we calculate the difference
in these scattering rates k1145 − k1064 = 0.05(9) s−1, as-
suming no correlation in the uncertainty of the two mea-
surements. At the 95% confidence level, this indicates
that the difference in loss rate must be below 0.23 s−1.
This is broadly consistent with the expected single pho-
ton scattering rate which we calculate to be 0.4(1) s−1

from the known linewidths of the transitions [2] and peak
laser intensity in our optical trap (20 kWcm−2).

III. PULSE SEQUENCES

We use various pulse sequences to perform Ram-
sey interferometry depending on the combination of
states targeted. These are shown schematically below.

(i)

(ii)

(iii)

Time

T

T

T

T/2 T/2

T/2 T/2

T/2 T/2

π

π

ππ
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π

π π

π π π

π π π π

At the start of the sequence the molecules are always
prepared in N = 0. The solid line with red fill indicates
microwave transitions driven between N = 0 and 1 rota-
tional states, and the dotted line with blue fill indicates
transitions driven between N = 1 and 2. Sequences are
used for the combinations (i) 1√

2
(|0⟩+ |1⟩), 1√

2
(|0⟩+ |1̄⟩)

(ii) 1√
2
(|0⟩+ |2̂⟩), (iii) 1√

2
(|1⟩+ |2̄⟩). In each case the top

(bottom) sequence shows the sequence without (with) a
spin-echo pulse. To measure a Ramsey fringe, the phase
of the last π/2 pulse is varied.

IV. RESIDUAL LIGHT SHIFT
CONTRIBUTIONS TO DECOHERENCE

In the absence of dipole-dipole interactions, the coher-
ence time T ∗

2 is limited by variation ∆E in the energy
difference between two states

T ∗
2 =

h

|∆E|
(S1)

where h is the Planck constant. In Fig. 4(a), we observe
decoherence without interactions which is suppressed by
a spin-echo pulse. Here we discuss possible sources
of this decoherence, specifically for the superposition
1√
2
(|0⟩ + |2̂⟩). For our calculations, we assume ∆E is

the 2σ variation in the transition energy.
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A. Instability in the trap laser frequency

The trap laser frequency is stabilised by a scan-
ning transfer cavity lock, and we estimate the stan-
dard deviation in the laser frequency to be 0.76MHz.
For a 2σ change in the laser frequency, the differ-
ential polarisability between |0⟩ and |2⟩ changes by
h× 2.9× 10−5 HzW−1 cm2. Moreover, we have directly
measured the coefficient relating the light shift to the
change in laser frequency to be 6.0(2)×10−7 in our trap.
The 2σ variation in the laser frequency therefore corre-
sponds to 2× (6× 10−7)× 0.76MHz = 0.92Hz which we
assume equal to ∆E/h, yielding a limit on T ∗

2 of 1.1 s.

B. Uncertainty in optimisation of magic detuning

We measure the magic detuning for a given state com-
bination as shown in Fig. 2(b). For the states |0⟩ and

|2̂⟩, our most precise measurement of the magic detun-
ing is found using a Ramsey time of T = 175ms, which
has 1σ uncertainty of 3MHz. A systematic detuning of
3MHz leads to an average light shift experienced by the
molecules of (6× 10−7)× 3MHz = 1.8Hz.

Spatial variation in this light shift causes decoherence.
We estimate this variation from the known geometry of
the trap beam and assuming a thermal cloud of molecules
at equilibrium. From this, the 2σ variation in the light
shift experienced will be 13% of the average, i.e. there is
spatial variation in the light shift of 0.13×1.8 = 0.234Hz.
This puts a limit on T ∗

2 of 4.3 s.

C. 10MHz frequency difference between beams

There is a 10MHz frequency difference between the
two beams that form the magic trap in order to elimi-
nate interference effects. When set symmetrically about
the magic frequency, there will be a light shift of (6 ×
10−7) × ±5MHz = ±3Hz. The effects from each beam
are broadly cancelled as the intensities are set to be the
same. However, variation in the relative intensities of
the beams will vary as molecules move around the trap.
We estimate from the known geometry of the trap beams
and assuming a thermal cloud of molecules at equilibrium
that the 2σ variation in the beam balance is only 2%.
This leads to variation in the light shift 0.12Hz that cor-
responds to a limit on T ∗

2 of 8.3 s.

V. PHASE SHIFT AS A FUNCTION OF
RAMSEY TIME

We observed a phase shift in the Ramsey fringe
as a function of the Ramsey time for non-interacting
states with the spin-echo pulse, as discussed in the
main text. This phase shift is shown in the graph
below, with a quadratic fitted to guide the eye.
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Supplementary Fig. 1. (a) Comparison of MACE calculation with and without considering loss for the 1√
2
(|0⟩ + |1̄⟩) state

pair. These calculations are both averages over 10 loss trajectories calculated at particle number N = 2391 and particle
lifetime 0.137 s. The filled (empty) markers show the experimentally measured fringe contrast with (without) a spin-echo pulse.
(b) Comparison of a single loss trajectory at cluster size Nc = 2, 4, 6, 8, 10 shown by the solid lines, alongside the relative error
betwen each MACE run and the Nc = 10 MACE run shown by the dashed lines.
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