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Synthetic dimensions, wherein dynamics occurs in a set of internal states, have found great success
in recent years in exploring topological effects in cold atoms and photonics. However, the phenomena
thus far explored have largely been restricted to the non-interacting or weakly interacting regimes.
Here, we extend the synthetic dimensions playbook to strongly interacting systems of Rydberg
atoms prepared in optical tweezer arrays. We use precise control over driving microwave fields to
introduce a tunable U(1) flux in a four-site lattice of coupled Rydberg levels. We find highly coherent
dynamics, in good agreement with theory. Single atoms show oscillatory dynamics controllable by
the gauge field. Small arrays of interacting atoms exhibit behavior suggestive of the emergence of
ergodic and arrested dynamics in the regimes of intermediate and strong interactions, respectively.
These demonstrations pave the way for future explorations of strongly interacting dynamics and
many-body phases in Rydberg synthetic lattices.

Analog quantum simulation in atomic, molecular, and
optical systems has seen tremendous growth over the
past decades. Recently, a flurry of activity has expanded
analog simulations through synthetic dimensions [1–3],
where dynamics occurs not in space but in alternative
degrees of freedom such as spin. Since the first pro-
posals a decade ago [4, 5], the synthetic dimensions ap-
proach has permeated photonic and atomic physics ex-
periment, with demonstrations in systems of atomic hy-
perfine states [6, 7], metastable atomic “clock” states [8–
10], atomic momentum states [11–13], trap states [14, 15],
photonic frequency modes [16], orbital angular momen-
tum modes [17], time-bin modes [18], and more. The
realization of synthetic dimensions in these diverse plat-
forms has led to a plethora of new simulation capabili-
ties [1, 2]. However, studies have been almost entirely re-
stricted to the non-interacting regime, with just a handful
probing collective mean-field interactions in synthetic di-
mensions [19–24] and only one recent report of strongly
correlated dynamics in synthetic dimensions [25].

Several years ago, arrays of trapped molecules and
Rydberg atoms were proposed [26–28] as an alternative
paradigm for exploring synthetic dimensions with strong
interactions. In this approach, one starts with a dipolar
spin system in which interactions naturally play a sig-
nificant role [29–31]. Then, by introducing tailored mi-
crowaves that drive transitions between internal states
in a way that mimics the hopping structure of a lattice
tight-binding model, the spin system is transformed into
a playground for exploring the dynamics of strongly inter-
acting matter in a synthetic dimension. In the past year,
the team of Kanunga and co-workers have demonstrated
the first Rydberg synthetic lattice [32], engineering and
probing topological band structures formed from the Ry-
dberg levels of individual Sr atoms. While this demon-
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FIG. 1. Rydberg synthetic dimensions for tweezer-
trapped atom arrays. (a) A pairwise array of optical
tweezer traps is used to initialize isolated pairs of 39K atoms.
(b)Averaged (over 1000 shots) fluorescence image of the atom
array. (c-d) Ground state atoms are transferred via STIRAP
to the |42S1/2,mJ = 1/2⟩ Rydberg level and then exposed to
microwaves (with frequencies f1−4) to simultaneously drive
multiple transitions between Rydberg levels. Dynamics of
the Rydberg state populations is achieved by state-selective
depumping and the imaging of ground state atoms. (e) The
engineered synthetic Rydberg lattice, a diamond plaquette
with flux ϕ that is tuned via the microwave phases.

stration [32] has laid the foundation for future develop-
ments of Rydberg and molecular synthetic lattices [33], it
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FIG. 2. Dynamics of Rydberg atoms and pairs of
atoms in a synthetic flux plaquette. (a-c) For flux ϕ
of (a) 0, (b) π/2, and (c) π, we plot the average populations
of single atoms at the synthetic sites |0⟩, |1⟩, and |2⟩ (top to
bottom). (d-f) For the same flux values as above, but for
the case of interacting atom pairs, we plot (top) the average
atom population at site |0⟩, P0, and (bottom) the two-atom
correlator C00. The error bars for all data are the standard
error of multiple independent data sets taken under the same
condition. The typical singles dataset is derived from roughly
200 post-selected images while pairs relate to roughly 50 post-
selected images. In (a-c), the theory curves are the ideal dy-
namics of Eq. 1 with no free parameters (Ω/h = 1.92(6) MHz).
For (d-e), the solid line is the theory for Eq. 1 combined with
all expected dipolar interaction terms (Ω/h = 1.92(6) MHz,
V/h = 3.44(8) MHz). For comparison, the dashed lines ne-
glect the state-changing dipolar contributions [34].

lacked the key ingredient motivating the use of Rydberg
atoms: strong dipole-dipole interactions.

In this paper, we extend the capabilities of Rydberg
synthetic dimensions by engineering an internal-state
lattice with a tunable artificial gauge field [35–40] for
small arrays of strongly interacting atoms [41]. We show
that the promising results of Ref. [32], wherein continu-
ous microwave coupling is performed for single Rydberg
atoms excited from a bulk sample, extend directly to the
real-time dynamical control of atoms prepared in opti-
cal tweezer arrays [41, 42]. The control of the artificial
gauge field in the synthetic dimension follows naturally
from our phase-coherent control of the driving microwave
fields. Finally, strong nearest-neighbor interactions in the
synthetic dimension lead to strong modifications of the
population dynamics as well as the observation of atom-

atom correlations. This work paves the way for future ex-
plorations of strongly-correlated dynamics and phases of
matter in Rydberg and molecular synthetic dimensions.
Our experiments begin by probabilistically loading 39K

atoms [43, 44] into optical tweezer arrays as depicted in
Fig. 1(a,b), nondestructively imaging the atoms for sub-
sequent post-selection, and cooling the atoms by gray
molasses [44, 45]. We optically pump the atoms (with
a quantization B-field of ∼27 G along the z axis) to a
single ground level

∣∣4S1/2, F = 2,mF = 2
〉
with an effi-

ciency of ∼98(1)%, and then we further cool the atoms
by trap decompression to ∼4 µK. We then suddenly turn
off the confining tweezer trap.
The atoms undergo a fixed free release time of 5 µs,

during which all of the dynamics in the Rydberg syn-
thetic lattice occurs. The atoms are promoted to an ini-
tial Rydberg level, undergo microwave-driven dynamics
between Rydberg levels, and are de-excited in a manner
that allows for Rydberg state-specific readout. Follow-
ing de-excitation, ground state atoms are recaptured in
the trap and imaged with high fidelity. Atoms remain-
ing in the Rydberg levels are weakly anti-trapped by the
tweezers, and are effectively lost between the initial and
final images. This bright/dark discrimination between
ground and Rydberg levels, combined with state-selective
de-excitation, allows us to study the state-resolved dy-
namics of the Rydberg level populations.
The initial excitation to the Rydberg level |0⟩ ≡∣∣42S1/2,mJ = 1/2

〉
is accomplished via two-photon

(“lower leg,” ∼405 nm, and “upper leg,” ∼975 nm)
stimulated Raman adiabatic passage (STIRAP) via
the

∣∣5P1/2, F = 2,mF = 1/2
〉

intermediate state [46,
47]. The averaged one-way STIRAP efficiency is
∼94(1)% [34]. After populating this initial state, we turn
on a set of microwave tones that allow atoms to “hop”
between the sites of an effective lattice in the “synthetic
dimension” spanned by the Rydberg levels [4, 26, 32].

As shown in Fig. 1(c-e), we identify the sites of
the synthetic Rydberg lattice with the atomic Ry-
dberg levels as |0⟩ ≡

∣∣42S1/2,mJ = 1/2
〉
, |1⟩ ≡∣∣42P3/2,mJ = 1/2

〉
, |2⟩ ≡

∣∣42S1/2,mJ = −1/2
〉
, and

|3⟩ ≡
∣∣42P1/2,mJ = 1/2

〉
. A single flux plaquette is

formed by adding microwave tones that resonantly drive
four pairwise transitions within this set of states.

The effective single-atom Hamiltonian is given by

H =
∑
⟨i,j⟩

Ωij

2
ĉ†j ĉi + h.c. =

Ω

2

∑
⟨i,j⟩

eiϕij ĉ†j ĉi + h.c. , (1)

where the nearest-neighbor tunneling terms are related
to the amplitudes (Ai) and phases (φi, at the atoms)
of the different microwave tones fi as Ω01 ∝ A1e

iφ1 ,
Ω12 = Ω∗

21 ∝ A2e
−iφ2 , Ω23 ∝ A3e

iφ3 , and Ω30 = Ω∗
03 ∝

A4e
−iφ4 . The magnitudes of these nearest-neighbor hop-

ping terms are calibrated based on pairwise Rabi dynam-
ics [34] and are set to a common value Ω. The relative
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phase of each tone at the atoms is controllable by the
source phase, and in particular we set the overall plaque-
tte flux ϕ via the source phase of the f1 tone.

Figure 2 displays the dynamics of the state popula-
tions (starting from the |0⟩ state at t = 0). The popu-
lations are corrected for measurement errors related to
the STIRAP infidelity and Rydberg-vs.-ground discrimi-
nation infidelity [34]. The |0⟩ state is measured by direct
depumping by the “upper leg” STIRAP laser after some
evolution time. To access the |1⟩ state, which shares
identical population dynamics in this model as the |3⟩
state, we first apply a π pulse on the |0⟩ to |1⟩ transi-
tion prior to depumping. To access the |2⟩ state, which
is quite close in energy to the |0⟩ state, we simply ap-
ply a strong (high-bandwidth) depumping pulse to mea-
sure the combined population of |0⟩ and |2⟩, P0+2. We
then extract the |2⟩ state population as P2 = P0+2 − P0.
For single atoms we generally find good agreement with
the population dynamics for the examined flux values of
Fig. 2(a) 0, (b) π/2, and (c) π. The changing timescales
for P0 recurrence reflects the flux-tuned spectral gaps of
the plaquette energy spectrum. One stark signature seen
in Fig. 2(c), for π flux, is the absence of population ap-
pearing at state |2⟩, which results from destructive inter-
ference of the clockwise and counterclockwise pathways.

The dynamics of lone atoms in Fig. 2(a-c) verifies our
faithful implementation of the single-particle synthetic
lattice and flux control. In Fig. 2(d,e), we use isolated
pairs of atoms to investigate how strong inter-particle
interactions enrich the dynamics. The principal interac-
tions between Rydberg atoms in this system involve long-
ranged (1/r3, with r the inter-particle spacing) dipolar
exchange [30]. In our system, having a uniform quan-
tization axis aligned at an angle θ = π/2 with respect
to the displacement vectors between pairs of atoms, the
primary interactions to consider are resonant dipolar-
exchange terms of the form |i⟩A |j⟩B ↔ |i⟩B |j⟩A, or
“flip-flop” interactions, in which the synthetic location
of internal Rydberg states |i⟩ and |j⟩ are swapped be-
tween the atoms at positions labeled A and B (for near-
est neighbors ⟨i, j⟩, with i, j ∈ {0, 1, 2, 3}), but the net
populations of the Rydberg levels are conserved. These
∆ℓ = 0 dipolar terms that conserve the net internal an-
gular momentum (and its projection along the quanti-
zation axis) also naturally conserve the total energy in
a spatially uniform system, and thus result in resonant
exchange dynamics [29, 48]. In our system, for pairs
of atoms spaced at a distance of 5 µm [Fig. 1(a,b)],
the resonant dipolar exchange energies can be enumer-
ated as {V01, V12, V23, V30} ≈ {2,−0.5, 1,−1}V , where
V/h = 3.44(8) MHz [34]. Because we operate at a mod-
est magnetic field and with relatively strong interactions,
additional off-resonant state-changing dipolar interaction
terms (∆ℓ = ±2, not conserving the net internal angu-
lar momentum or the individual state populations) also
influence the state population dynamics [34].
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FIG. 3. Flux-dependence of atom and atom pair dy-
namics. (a) A plot of the average probability vs. time t and
flux ϕ for atoms initialized at state |0⟩ to remain at that state
(P0, for single atoms). (b) The same quantity as plotted in
(a), and with a common color bar at right, but as calculated
for pairs of atoms interacting via dipole-dipole interactions as
described in the text. (c,d) Measured P0 for single atoms
(red squares) and pairs (green circles) after evolution times
of t = 0.350 µs and 0.525 µs, shown along with theory curves
(solid lines), corresponding to cuts along the white and black
dashed lines in panels (a,b). The error bars in (c,d) are the
standard error of multiple independent data sets.

For pairs, we restrict ourselves to measuring the pop-
ulation of |0⟩ for each atom, as the basis rotation pulses
used for the readout of other internal states are influ-
enced by the presence of strong interactions. Figure 2(d)
shows the average probability for a pair of atoms to re-
side at the site |0⟩. We compare to no-free-parameter
simulations of Eq. 1, also incorporating the full set of ex-
pected interactions (solid line). For comparison, we also
show simulations (dashed lines) that ignore the state-
changing dipolar terms, which can be suppressed by op-
erating at larger magnetic bias fields or with larger inter-
atomic spacings. For pairs in this intermediate interac-
tion regime [V/Ω = 1.8(1)], we observe that the dipo-
lar interactions strongly modify the dynamics, in gen-
eral increasing the dynamical timescales and decreasing
the amplitude of recurrences. As a more direct probe of
interaction-driven correlations, we measure the two-atom
correlator C00 = ⟨ĉ†0,Lĉ0,Lĉ

†
0,Rĉ0,R⟩ − ⟨ĉ†0,Lĉ0,L⟩⟨ĉ

†
0,Rĉ0,R⟩
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with L and R referring to the left and right atoms of
isolated pairs. This quantity vanishes in the absence of
interactions, and grows as the atoms develop correlations
of their positions in the synthetic lattice. Both the P0

and C00 dynamics are in good agreement with our text-
book theory expectations, confirming that dipolar Ryd-
berg atom arrays are a promising platform for exploring
coherent interactions in tunable synthetic lattices.

We now more thoroughly explore in Fig. 3 the flux-
dependent dynamics for individual atoms and atom pairs.
Figure 3(a,b) show numerical simulations of the full flux-
dependence of the P0 dynamics for singles and pairs. For
singles, as described before, the changing timescales for
recurrences of the measure P0 simply reflect the flux-
modified gaps of the system’s energy spectrum. For our
measurements, we probe precisely at the first expected
P0 recurrence time for singles at flux values of ϕ = π and
0, namely at t = 0.350 µs in Fig. 3(c) and t = 0.525 µs
in Fig. 3(d), respectively. For singles, we observe good
general agreement with the full flux-dependence of the
expected P0 dynamics. For doubles, we observe both
in theory and experiment that the dynamics slow down
considerably, such that P0 remains relatively small at
the single-atom recurrence times. Interestingly, one finds
already for this intermediate interaction regime [V/Ω =
1.8(1)] that the pair dynamics for a flux of 0 and π look
somewhat similar, suggestive of the expected response in
the strong interaction limit where mobile bound pairs [49]
would display an enhanced flux sensitivity.

Finally, we explore how interactions in Rydberg syn-
thetic dimensions can have an even richer influence on the
dynamics as we extend towards many-atom arrays. In
Fig. 4(a,b), we contrast the ϕ = π dynamics of one, two,
and six-atom arrays for intermediate [(a), V/Ω = 1.8(1),
Ω/h = 1.92(6) MHz] and large [(b), V/Ω = 9.0(5),
Ω/h = 0.38(1) MHz] interaction-to-tunneling ratios. For
both cases, P0 oscillates with high coherence and a single
frequency for single atoms (there is only a single energy
gap value at π flux). However, interactions lead to qual-
itatively different dynamics in multi-atom arrays [34].
In Fig. 4(a), for V/Ω ∼ 1.8, the macroscopic observ-
able P0 shows coherent revivals with a structured time-
dependence for pairs, and less oscillations but a clear
decay for six-atom clusters. Specifically, numerical simu-
lations for the six-atom array show a rapid relaxation to
P0 ≈ 1/4, suggestive of an approach to ergodicity in this
closed many-body system. At very long times, the devi-
ation of the numerics from 1/4 result simply from state
non-conserving interactions [34]. The dynamics of arrays
relative to singles changes remarkably for strong inter-
actions, V/Ω ∼ 9, as shown in Fig. 4(b). For pairs, we
observe only a very slow decay of P0 over the 3 µs mea-
surement window, consistent with the prediction of pair-
hopping in this large V/Ω limit [49]. The P0 dynamics
is even slower for six-atom clusters, and in this case the
dynamics should be attributed almost entirely to state
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FIG. 4. Scrambling and self-trapping in few-atom ar-
rays. (a) Dynamics for single atoms (red squares), atom
pairs (green circles), and six-atom arrays (orange diamonds)
under a flux of π and for a characteristic interaction-to-
hopping ratio of V/Ω = 1.8(1) with Ω/h = 1.92(6) MHz.
The singles and pairs data are the same as for Fig. 2(c,f).
(b) Same quantities as in (a), but for reduced hopping am-
plitude Ω/h = 0.38(1) MHz and V/Ω = 9.0(5). The solid
(dashed) lines in panels (a,b) are the no-free-parameters the-
ory based on Eq. 1 and the full set (resonant-only set) of
expected dipolar interactions. Experimental error bars are
the standard error from multiple independent data sets.

non-conserving dipolar processes. In the case of only res-
onant interactions (dashed line), a full interaction-driven
immobilization or self-trapping is expected in this strong
interaction regime, related to the emergence of quantum
strings [26–28]. In this large V/Ω regime, one would ex-
pect the system to be prone to Hilbert space fragmen-
tation [50, 51] and fully arrested dynamics under added
perturbations (e.g., a gradient or disorder).
These observations of highly-excited self-trapped

strings pave the way for future experiments to explore
the predicted ground state quantum string and mem-
brane phases in Rydberg synthetic dimensions [26–28].
Beyond the physics of dipolar strings, which arise natu-
rally for the most generic synthetic lattices, the excellent
coherence properties observed in this first exploration of
tweezer-array based Rydberg synthetic dimensions bodes
well for extensions to study the interplay of interactions
and topology or frustration in more complex synthetic
lattices, such as flat-band models, extended flux lattices,
and models with tunable disorder and dissipation.
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Supplemental Material for
“Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux”

Experimental initialization procedure

We begin our experiments by loading 39K atoms into one-dimensional optical tweezer arrays generated by diffraction
of 780 nm laser light from an acousto-optic deflector (AA Opto-Electronic part number DTSX-400-780). Every cycle
of the experiment (having a duration of 1.3 s), atoms are first probabilistically loaded into the tweezer traps with an
average probability of ∼55%. Two different tweezer patterns are used for the studies presented: the pattern of seven
two-site dimers depicted in Fig. 1(a,b) as well as a pattern of three six-site clusters used for the data in Fig. 4.

After an initial loading, the samples of atoms are nondestructively imaged a first time for subsequent post-selection.
The fluorescence imaging, with a duration of 40 ms, is characterized by a survival probability >99% and a discrim-
ination fidelity (for the assignment of an atom occupancy or vacancy) >99% [44]. The atoms are then re-cooled by
gray molasses [43, 44] as well as adiabatic trap decompression (lowering the depth of our Gaussian tweezer traps from
an initial depth of ∼0.95 mK to a final depth of 40 µK) to a final temperature of ∼4 µK as calibrated by release and
recapture [55]. This overall preparation procedure, as well as the release-and-recapture probability curves (and associ-
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FIG. S1. Initial state preparation and temperature optimization procedure. (a) Depump-heating out sequence to
optimize the σ+ polarization of the D1 optical pumping beam. After pumping atoms into |F = 2,mF = 2⟩ dark state, we turn
the repump component off, and the atoms get depumped into |F = 1⟩ states by the imperfect π and σ− light in the optical
pumping beam. Then we apply a heating beam (weak D2 light resonant to the |F = 2,mF = 2⟩ ↔ |4P3/2,mj = 3/2⟩ cycling
transition) to remove |F = 2⟩ atoms. Measurement of the surviving atom number provides a measurement of the |F = 1⟩
population after the depumping step. (b) Measured F = 1 population versus the depump duration for the case with only
magnetic field along the z-direction (red square, By off) and that with an additional magnetic field in the y-direction (black
circle, By on). Since By changes the quantization axis, the atoms suffer from a relatively rapid depumping process. The
exponential fittings (solid lines) give the corresponding time constant: τop = 72(2) µs with By on and τdp = 3.0(2) ms with By

off. (c) Time sequence for optimization of the atom temperature with release-recapture measurement: (1) After first imaging
with a trap depth of ∼0.95 mK, we dynamically ramp down the D1 power at a fixed trap depth, cooling the atoms from
∼60 µK (static cooling without changing D1 power) down to ∼20 µK; (2) Then, we ramp the trap depth down to ∼0.25 mK
and perform optical pumping with D1 frequency shifted to compensate the revised trap light shift; (3) We further adiabatically
ramp the trap depth down to ∼40 µK to further cool the atoms to ∼4 µK. (d) Release and recapture measurements of the
atom temperature after different cooling processes. The temperatures are resolved by fitting the respective experimental data
sets to Monte-Carlo simulations (dashed lines).
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ated numerical comparisons for temperature estimation) can be seen in Fig. S1(c,d). The three release-and-recapture
curves in Fig. S1(d) are respectively characterized by a temperature of ∼60 µK (black data points and theory) under
static D1 cooling in the trap at its initial depth, a reduced temperature of ∼20 µK (green data points and theory)
following a dynamical reduction of the D1 molasses cooling power, and a minimum temperature of ∼4 µK (red data
points and theory) following an adiabatic ramp down of the optical tweezer trap to a final depth of ∼40 µK.

In preparation for the Rydberg studies, prior to the final adiabatic cooling stage, the trapped atoms are optically
pumped to a single ground internal state,

∣∣4S1/2, F = 2,mF = 2
〉
, with∼98(1)% efficiency. As depicted in Fig. S1(a,b),

the efficiency is estimated by comparing the characteristic depumping time for the case of the actual bias field
Bz = 27 G implemented in experiment (τdp = 3.0(2) ms, By off) to the case where an additional magnetic field is
added along the y axis (τop = 72(2) µs, By on, with By ∼ 12 G). This additional field By disrupts the polarization
purity of the depumping beam relative to the total quantization axis, and the corresponding measurement provides
a lower estimate for the depumping rate for unpolarized light. The depumping times for these two situations can be
combined to estimate the optical pumping (OP) efficiency η = 1− τop/τdp = 98(1)% [56].

The excitation of the atoms to Rydberg levels (principal quantum number n = 42) is performed after releasing
the atoms from the optical tweezer traps, which are weakly anti-trapping (with a polarizability that is roughly 30
times lower in magnitude as compared to that for the ground state) for the target Rydberg level. After ∼0.2 µs of
release, a two-photon STIRAP pulse is applied, as depicted in Fig. S2. This excitation involves laser light slightly
(∼15 MHz) detuned from the

∣∣4S1/2, F = 2,mF = 2
〉
↔

∣∣5P1/2, F = 2,mF = 1/2
〉
transition (“lower leg,” having a

wavelength of ∼405 nm) and the
∣∣5P1/2, F = 2,mF = 1/2

〉
↔

∣∣42S1/2,mJ = 1/2
〉
transition (“upper leg,” having a

wavelength of ∼975 nm). The two lasers used for STIRAP are stabilized via Pound-Drever-Hall (PDH) locking to a
common ultra-low expansion (ULE) optical cavity (Stable Laser Systems). Peak single-photon (resonant) Rabi rates
of ∼2π × 20 MHz for the lower and upper legs of the STIRAP transition are achieved by focusing the combined
laser beams to respective waists of 40 µm and 30 µm. The peak powers I0,L/U at the atoms are roughly 3 mW for
the “lower leg” and 300 mW (after amplification by a tapered amplifier) for the “upper leg,” respectively. We use
Gaussian-shaped pulses for both the lower and upper legs, as shown in Fig. S2(b), the intensities of which follow the

formula IL/U (t) = I0,L/Uexp
[
− (t±∆t/2)2

σ2

]
with ∆t = 0.3 µs and σ = 0.3 µs. Under these conditions, we achieve a

one-way STIRAP efficiency of ∼94(1) %.
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FIG. S2. Calibration of the Rabi frequencies between each Rydberg state pair in isolated single atoms. (a) Level
structure used in our experiment. (b) Time sequence with only STIRAP pulses and 975 nm de-excitation pulse to calibrate
the baselines of the oscillation between Rydberg state pairs. (c) Time sequence with an extra MW pulse to measure the
Rabi oscillation between |0⟩ = |42S1/2,mj = 1/2⟩ and |1⟩ = |42P3/2,mj = 1/2⟩ (|3⟩ = |42P1/2,mj = 1/2⟩) driven by f1
(f4). (d) Time sequence with two extra π-pulses to measure the Rabi oscillation between |2⟩ = |42S1/2,mj = −1/2⟩ and
|1⟩ = |42P3/2,mj = 1/2⟩ (|3⟩ = |42P1/2,mj = 1/2⟩) driven by f2 (f3). (e-h) Measured uncorrected state population dynamics
when driving pairwise Rabi oscillations between states addressed by the tones f1 to f4, respectively (from top to bottom).
The solid line fits are damped sine functions used to calibrate the respective Rabi rates we use as {Ω01,Ω12,Ω23,Ω30}/h =
{1.90(3), 1.86(4), 1.93(4), 1.94(4)} MHz.
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The synthetic lattice – state configuration and calibration

The mapping between bare Rydberg levels and the sites of our synthetic lattice are detailed in the main text
Fig. 1(c,e). These chosen assignments are informed by a few simple considerations: (i) we would like all of the state-
to-state transitions to be achieved by dipole-allowed first-order processes, (ii) we desire for the resonant exchange
interactions to only occur between nearest neighbors in the synthetic dimension, and (iii) for technical considerations,
we require that all of the transitions can be addressed with only a moderate microwave bandwidth. The “folded
diamond” layout of Fig. S2(a) satisfies these design goals.

The microwave transition frequencies between each Rydberg state pair in our system lie in the vicinity of 48 GHz,
as shown in Fig. S2(a). We first input a single-tone microwave signal at ∼12 GHz (generated from a Vaunix Lab Brick
device) into a 4× frequency multiplier (Marki AQA-2156). We then mix this high-frequency carrier signal with two
multi-tone arbitrary waveform signals (generated from a Teledyne SDR14TX card) via an IQ frequency mixer (Marki
MMIQ-4067L) to produce the required sidebands to resonantly couple the relevant pairs of states in our system.

Readout from the various Rydberg levels is achieved through combinations of microwave state-swapping pulses and
optical depumping on the “upper leg” 975 nm transition. For the |0⟩ state that we initially populate via STIRAP, the
readout for measuring the population P0 simply involves applying near-resonant depumping on the upper leg 975 nm
transition (followed by ground state imaging). To note, depumping from the nearby |2⟩ state (75 MHz away in energy
at these moderate bias fields) is avoided by using sufficiently weak intensities of the 975 nm depumping light. As
described in the main text, the ability to depump both the |0⟩ and |2⟩ state simultaneously by applying high-intensity
depump light provides a useful way to measure the |2⟩ state population as P2 = P0+2 − P0. For the states |1⟩ and
|3⟩, relating to 42P levels, the populations P1 and P3 can be read out by applying π pulses on the |0⟩ ↔ |1⟩ or the
|0⟩ ↔ |3⟩ transition prior to measurement of the |0⟩ state population. And, while not utilized in this study, coherences
between the sites in the synthetic dimension can also be read out in such a way.

Figure S2 details the procedure for calibrating the effective tunneling rates (transition Rabi rates) along the various
links of the lattice. Because the various transitions involve different sets of states and require different polarizations
of microwaves, the individual amplitudes of the tones f1−4 are adjusted to achieve a uniform tunneling rate across all
links. As described in the text, the overall flux ϕ of the synthetic diamond lattice is calibrated based on the dynamical
response of isolated single atoms (cf. Fig. 3) and its comparison to theory. The value of ϕ is set by controlling the
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FIG. S3. Calibration of the dipole-dipole interaction strength. (a) Level structure used to measure the dipolar exchange
interaction with |↓⟩ = |0⟩ = |42S1/2,mj = 1/2⟩ and |↑⟩ = |1⟩ = |42P3/2,mj = 1/2⟩. The interatomic distance is set to ≈ 10 µm,
at exactly twice the spacing as used for the experiments described in the main text. (b) Timing diagram of the sequence used
to measure Ramsey coherence oscillations for pairs of interacting atoms. After initially preparing a pair of atoms in |↓↓⟩ via
STIRAP, a strong microwave π/2 pulse (Rabi frequency ∼2π × 4.0 MHz) is applied to rotate the atom pair to a product state
|↓ +i ↑⟩ |↓ +i ↑⟩ /2 = [|↓↓⟩ − |↑↑⟩+ i(|↑↓⟩+ |↓↑⟩)]/2. Then we let the system freely evolve for a duration of tgap, during which

the time evolution follows [|↓↓⟩−|↑↑⟩+ ieiV
cal
01 tgap/ℏ(|↑↓⟩+ |↓↑⟩)]/2 as the state |↑↓⟩+ |↓↑⟩ has an eigenenergy of V cal

01 . We finally
read out the population in |↓⟩ after applying an identical microwave π/2 pulse and 975 nm de-excitation pulse. (c) Detected
population in |↓⟩ state versus the free evolution time tgap for non-interacting single atoms (blue circles) and for the atoms of
interacting pairs (red squares). The fitting (solid line) to data for atom pairs with a damped sine function gives the oscillation
frequency, i.e., the interaction strength, V cal

01 /h = 0.86(2) MHz. In contrast, fitting (dashed line) to the single-atom data with
a sine function shows only a slow variation, indicating the frequency of microwave f1 is detuned from resonance by ∼150 kHz.
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source phase of the f1 frequency tone relative to the other tones. To note, we find in experiment that the flux ϕ is
extremely stable, with no noticeable variations on the week-long timescales hitherto explored.

Dipolar interactions – theoretical expectation and experimental calibration

In the language of our tight-binding “synthetic lattice” model, the dipole-dipole interaction Hamiltonian is

Hint =
∑
m,n

∑
i,j,i′,j′

V mn
iji′j′e

i∆i′j′
ij tĉ†i,mĉj,mĉ†j′,nĉi′,n + h.c. , (S1)

where V mn
iji′j′ = ⟨jmi′n|Vdd|imj′n⟩ with the dipolar interaction operator Vdd =

1
4πϵ0R3

mn

[
1
2 (2d

0
md0n + d+md−n + d−md+n )− 3

2 (d
−
md−n + d+md+n )

]
between atom m and atom n (d0, d+ and d− are the

respective dipole moment operators for π, σ+ and σ− transitions), and where ∆i′j′

ij is the energy difference between
|im⟩ ↔ |jm⟩ and |i′n⟩ ↔ |j′n⟩ transitions (or, equivalently, the energy difference between the two-body state
configurations |im⟩|j′n⟩ and |jm⟩|i′n⟩). Here the state index i, j (i′, j′) also covers other unused sublevels in both 42P
manifolds, as displayed in Fig. S4, to include the strong state-changing dipolar interactions.

There are four primary dipolar exchange processes that we care about (i.e., they are the only four processes that
are resonant for the states intentionally populated in our experiment), occurring between pairs of atoms occupying the
states |0⟩ and |1⟩ (with an energy scale V01), |1⟩ and |2⟩ (V12), |2⟩ and |3⟩ (V23), and |3⟩ and |0⟩ (V30). Based on the
construction of our synthetic lattice, all of these resonant “flip-flop” terms occur between pairs of atoms residing on
neighboring sites of our synthetic lattice. Importantly, in this work the population dynamics is also impacted by the
presence of relatively strong state-changing dipolar interactions that are not very far off from resonance (because we
operate with only a moderate quantization field). The full enumeration of resonant population-conserving (∆ℓ = 0)
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FIG. S4. All dipole-dipole interaction terms relevant to our experimental scheme. Blue box: Resonant flip-flop

interactions with ∆i′j′

ij = 0. We list the interaction energies (reduced by Planck’s constant) in MHz. Red box: Non-resonant
state-changing interaction terms. The listed interaction strength Viji′j′ values (also reduced by Planck’s constant and listed in
MHz) are based on the experimentally calibrated V01 = 6.88 MHz scaled by the respective C3 coefficients calculated with the

Alkali Rydberg calculator (ARC) package [57]. We also list the configurational detuning ∆i′j′

ij with respect to our synthetic
lattice states for each of the processes (also in MHz).
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and off-resonant population non-conserving (∆ℓ = ±2) dipolar interaction terms are presented in Fig. S4. The
resonant terms are listed in the blue box, and all relevant (not off-resonant by more than 125 MHz) non-resonant
exchange terms are enumerated in the red box. As described in the main text, simulation comparisons generally
include both the idealized interaction scenarios (resonant only, dashed lines) as well as the full expectations based on
textbook dipolar physics (all terms, solid lines).

Based on our imaged tweezer patterns and the designed magnification of our imaging system, we expect our
tweezer trap spacing to be ∼5 µm. Based on this spacing and the known [57] C3 coefficients for the Rydberg states
we consider, we can obtain estimates for these various dipolar interaction energies. Because the imaging system’s
magnification is not independently calibrated, however, we perform direct measurements of the dipolar exchange rates
as a primary calibration of the dipolar interaction energies. First, we have measured the energy detuning of the triplet
resonance from the single-atom resonance for the terms V01 and V30. These measurements are performed in the actual
(∼5 µm spacing) tweezer configuration utilized in the main text. The results confirm the relative magnitude and
signs of the expected Vij exchange energies, and in combination these measurements suggest a tweezer spacing of
5.1(2) µm. However, we seek an alternative and more sensitive calibration of the dipolar exchange rate, using the
technique of Ramsey coherence oscillations as employed in Ref. [29]. The procedure for this is depicted in Fig. S2.
This measurement involves performing high-fidelity π/2 rotations before and after some free evolution period (tgap).
Because the achievement of high-fidelity π/2 pulses is difficult in the presence of strong interactions, and hence for
our 5 µm tweezer spacing, we in fact perform this calibration measurement in an array that has exactly twice the
spacing between neighboring atom traps (as set by the frequency tones applied to the acousto-optic deflector). We
first tune the transition frequency very close to resonance, such that for singles (empty blue circles) we only observe
a slow variation of the Ramsey signal (due to a slight precession of the spin during the Ramsey gap time, as the
second π/2 pulse has no phase shift relative to the first pulse). For pairs, we observe an additional oscillation of the
average Ramsey coherence, consistent with the coherent entangling and disentangling of the atoms at the rate V01/h.
This measured rate of V cal

01 /h = 0.86(2) MHz is 4 times smaller than the value of V as defined previously, setting
V/h = 3.44(8) MHz for our short-spacing arrays and likewise confirming a spacing of 4.8(1) µm based on comparison
to the predictions of the Alkali Rydberg calculator (ARC) package [57].

Corrections for preparation and readout infidelity

The primary data we measure for all state populations P0−3 appear similar to those presented in Fig. S2 and
Fig. S3. There are two limiting quantities to note. First, there is an upper baseline value that is on average equal
to Pu = 0.88(1), which stems from inefficiencies of STIRAP and release-and-recapture survival. There is also a lower
baseline of the measurements, having a value Pl = 0.21(1), that we believe stems from the decay (and subsequent
recapture) of the short-lived n = 42 Rydberg states. This lower baseline represents a lack of fidelity in discriminating
atoms from being successfully depumped from the state of choice as opposed to decaying from any of the Rydberg
levels. These infidelities limit the contrast of single atom dynamics, and more importantly limit our ability to faithfully
measure atom-atom correlation dynamics.

For all of the data in the paper, we “correct” for these known infidelities in the following way: we define the
corrected populations Pi in relation to the measured bare populations P bare

i as Pi = (P bare
i − Pl)/(Pu − Pl).

Interactions in few-atom arrays – scrambled and frozen dynamics

In Fig. S5, we provide slightly more numerical evidence for the suggestive claims made in the main text that in
our six-atom clusters we begin to see the emergence of ergodic dynamics and frozen dynamics in the regimes of
intermediate and strong interactions. In the upper row of plots, we investigate over timescales of 0 to 5 µs the flux-
dependent dynamics expected for atom arrays of varying size for the case of intermediate interactions (V = 1.8Ω,
Ω/h = 1.92 MHz). In this regime, with several interaction energies Vij being nearly on the same scale as the single-
particle hopping terms, one may reasonably expect that the nonequilibrium dynamics of few-atom clusters becomes
quite complex, with the absence of any revivals or oscillatory dynamics on reasonable timescales. This is what is
observed in the six-atom calculations, where at reasonably short timescales of just a few µs there is essentially no
flux dependence or dynamics to the P0 measure, with a static value of ≈ 1/4 found for all ϕ values. These numerical
results suggest that nearly ergodic behavior may be expected in these interacting many-state systems.

In the lower row of plots of Fig. S5, we instead show the flux-dependent dynamics (over the same timescale of 5 µs)
that is expected for atom arrays in the strong interaction regime (V = 9.0Ω, Ω/h = 0.38 MHz). In this regime, one
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sees that the addition of more and more atoms to the array has a very different influence on the dynamics. For pairs,
the dynamics slows considerably as compared to singles and the case of pairs with intermediate interactions. For
arrays with three or more atoms, the dynamics appears to nearly cease over the timescale investigated. As discussed
in the main text, this is consistent with the expectation that zero-energy strings should become immobile if they are
far separated in energy from the interacting configurations that would be populated by uncorrelated atom hopping in
the synthetic dimension.
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FIG. S5. P0 dynamics for increasing lengths of few-atom clusters (left to right), for both intermediate (top,
V/Ω = 1.8) and strong (bottom, V/Ω = 9) interactions. Each plot shows the phase dependence of the array-averaged
P0 dynamics. Top: V/Ω = 1.8 and Ω/h = 1.92 MHz, for atom array lengths from one to six. Bottom: V/Ω = 9 and
Ω/h = 0.38 MHz, for atom array lengths from one to six. Here, only the resonant flip-flop (state conserving) dipolar interactions
are considered.


	Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux
	Abstract
	Acknowledgements
	References
	Supplemental Material for  ``Strongly interacting Rydberg atoms in synthetic dimensions with a magnetic flux''
	Experimental initialization procedure
	The synthetic lattice – state configuration and calibration
	Dipolar interactions – theoretical expectation and experimental calibration
	Corrections for preparation and readout infidelity
	Interactions in few-atom arrays – scrambled and frozen dynamics


