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We characterize the equation of state (EoS) of the SU(N > 2) Fermi-Hubbard Model (FHM) in
a two-dimensional single-layer square optical lattice. We probe the density and the site occupation
probabilities as functions of interaction strength and temperature for N = 3, 4 and 6. Our mea-
surements are used as a benchmark for state-of-the-art numerical methods including determinantal
quantum Monte Carlo (DQMC) and numerical linked cluster expansion (NLCE). By probing the
density fluctuations, we compare temperatures determined in a model-independent way by fitting
measurements to numerically calculated EoS results, making this a particularly interesting new step
in the exploration and characterization of the SU(N) FHM.

The interest in the square lattice SU(2) Fermi-Hubbard
Model (FHM) has been historically driven by its suitabil-
ity to describing cuprate superconductors, owing to their
layered character and exceptionally simple band struc-
ture near the Fermi surface. For other more complex
and multi-orbital materials, however, descriptions with
N > 2 spin components have long been used, which, in
addition to being of fundamental interest, provide an ele-
gant approximation of degenerate orbitals using a higher
symmetry group. Larger N systems, in particular in
2D geometries, are relevant for describing the physics
of transition-metal oxides [1–3], orbitally-selective Mott
transitions [4–7], graphene’s SU(4) spin valley symme-
try [8], twisted-bilayer graphene [9–12], the Kondo ef-
fect [13, 14], heavy fermion behavior [15], and achiev-
ing robust itinerant ferromagnetism [16, 17]. The SU(N)
FHM is a special case of the N > 2 models that enjoys a
higher symmetry group that stabilizes quantum fluctua-
tions [18], making it a fertile ground for theory, and con-
stituting a baseline to more complex multi-orbital mod-
els. The determination of the N > 2 equation of state
(EoS) of the SU(N) FHM is an important milestone in
the attempt of understanding its properties. However,
the exponential scaling of the Hilbert space with N and
the increased severity of the fermion sign problem [19]
make its numerical simulation more challenging than the
N = 2 case [20–23].

Ultracold atoms in an optical lattice have provided
valuable quantum simulations of the SU(2) FHM [24].
They complement and can sometimes outperform clas-
sical simulations [25, 26]. More recently, the SU(N >
2) FHM has been successfully explored with ultracold
alkaline-earth-like atoms such as 173Yb or 87Sr in optical
lattices, which naturally feature a full SU(N) symmetry
in the atomic ground state [27–35]. A substantial effort

has been placed in probing the thermodynamics and the
short-range correlations of the model for different spin de-
generacies and lattice geometries, and experiments have
gone well-beyond the regime that can be calculated with
theory [36–42]. However, the SU(N) generalization re-
mains much less explored and understood compared to
the SU(2) case [43]. This is particularly true in two di-
mensions, where the thermodynamics of the SU(2) FHM
at intermediate temperatures have been studied exten-
sively [44–60].

In this Letter, we probe the equation of state of the
two-dimensional SU(N) FHM in a square lattice at inter-
mediate temperatures in both the metallic and the Mott
regime and compare our results with numerical calcula-
tions. In particular, we determine the in-lattice temper-
ature and entropy by fitting experimental data using nu-
merical methods such as determinantal quantum Monte
Carlo (DQMC) [61, 62] and numerical linked cluster ex-
pansion (NLCE) [63, 64]. We additionally determine the
entropies in the 2D bulk before loading and after unload-
ing from the lattice potential, and separately characterize
the system inside the lattice with a thermometry relying
on the fluctuation-dissipation theorem (FDT) based on
the measurement of density fluctuations, without requir-
ing modeling by theory.

The SU(N) FHM Hamiltonian is given by:

Ĥ = −t
∑

⟨i,j⟩,σ

(
ĉ†iσ ĉjσ + h.c.

)
+
U

2

∑

i,σ ̸=τ

n̂iσn̂iτ−
∑

i,σ

µin̂iσ,

(1)

where ĉ†iσ and ĉiσ represent the fermionic creation and
annihilation operators at site i with spin σ ∈ {1 . . . N},
n̂iσ = ĉ†iσ ĉiσ is the number operator, ⟨i, j⟩ denotes next-
neighbor lattice sites, t is the hopping amplitude, U is the
on-site interaction strength and µ denotes the chemical
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FIG. 1. Probing the 2D SU(N) Fermi-Hubbard model with
ultracold atoms. (a) The 1S0 ground state of 173Yb natu-
rally features an SU(6) symmetry, which can be freely tuned
to N ≤ 6 by preparing a suitable combination of the nu-
clear spin states mF = −5/2,−3/2, . . . ,+5/2 (colored circles
and arrows). (b) Schematic of the experimental setup show-
ing a gas in a single layer 2D square lattice with harmonic
confinement detected with absorption imaging along gravity.
(c) Spatial distribution of the density n(x, y) for N = 6. Each
cloud shown in the horizontal frame has been prepared with
the same initial entropy in the bulk and loaded into the lattice
to a different U/t value. (d) Singly-occupied sites after par-
ity projection. Each horizontal frame corresponds to the same
state shown in the same column of (c). (e) Density profiles for
the data shown in (c) and (d) along the corresponding dashed
lines in the left frames. Each image was produced using the
averaging of 8 shots after center of mass alignment [65].

potential, which absorbs the contribution of the trap con-
finement in the local density approximation (LDA) [66].

In this work, we directly probe the local density, com-
ponents of the site-occupation distribution, and the den-
sity fluctuations within the detection resolution of a few
lattice sites. By differentiating the density with respect
to the local chemical potential, we evaluate the isother-
mal compressibility κ = ∂n/∂µ|T . Crucially, we imple-
ment a 2D single-layer SU(N) ensemble that we probe
with perpendicular high-resolution absorption imaging.
This avoids integrating over inhomogeneous stacks of 2D
systems [67, 68] and allows us to directly access the den-
sity profile without complex reconstruction techniques re-
quired in 3D [37] and access density fluctuations as an
additional thermodynamic in-situ observable.

In our experiment, we start by loading a degenerate

Fermi gas of 173Yb with tunable N ≤ 6 equally pop-
ulated components [see Fig. 1(a)] and an entropy per
particle s/kB >∼ 1.0 into the single, horizontal layer of
a vertical lattice. In this layer, we adiabatically ramp
up a 2D square lattice potential with a wavelength of
λ = 759 nm and a spacing of d = λ/2 [see Fig. 1(b)]. By
modifying the lattice depth, we can tune the strength of
the interactions. We measure the density distribution us-
ing in-situ, saturated absorption imaging with a spatial
resolution of approximately 2 µm ≈ 5d [65].

The measured 2D density n(x, y) of an SU(6) ensem-
ble is shown in Fig. 1(c) for different interaction strengths
and the same initial state preparation in the 2D bulk (the
potential without in-plane lattices). Because of the har-
monic confinement generated by the Gaussian profile of
the lattice beams, the chemical potential varies across
the trap, sampling different regions of the EoS. For in-
creasing interactions, and in particular when the on-site
interaction is larger than the square lattice bandwidth
(U/t >∼ 8), we observe the emergence of plateaus at in-
teger density which we associate with an incompressible
regime, a signature of a Mott insulating state.

As a distinctive probe of number squeezing effects in
and close to the Mott regime, we determine the oc-
cupation number distribution by measuring the parity-
projected density. After tuning U/t, we freeze the mo-
tion of the atoms by rapidly increasing the lattice depth
and applying a photoassociation beam [36], which con-
verts on-site pairs into excited-state molecules that are
subsequently lost. The process removes > 99% of the
on-site pairs and ≈ 5% of the remaining atoms [65].
Fig. 1(d) shows the distribution of the singly-occupied
sites corresponding to the same states of Fig. 1(c). The
increase in depletion in the center with increasing inter-
action strength is a consequence of number squeezing to
a high atom pair fraction.

To access different spin degeneracies, we prepare N <
6 ensembles by removing spin components using opti-
cal pumping [65]. In Fig. 2(a-d), we show the EoS
as a function of the local chemical potential µ/U for
N ∈ {6, 4, 3}. The chemical potential at a given loca-
tion is calculated from the potential of the trap µ(x, y) =
µ0 − 1

2

(
κxx

2 + κyy
2
)
. The exact shape of the potential

is determined by fitting the density, where the trap fre-
quencies are left as free parameters. We use a combined
fit of the densities for N = 3, 4 and 6 for each separate
U/t, but verify that separate fits for each N return val-
ues compatible with those of the combined fit. The fit of
the EoS is performed in two dimensions, leaving as free
parameters the temperatures T (U/t,N) and the chemi-
cal potential µ0(U/t,N) at the center of the trap. The
theoretical density is convolved with the reconstructed
point spread function (PSF) [65] to take into account the
imaging imperfections.
For the EoS of Fig. 2, each spin mixture has been pre-

pared with the same initial entropy per particle s/kB =
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FIG. 2. Equation of state for the SU(N) Fermi-Hubbard Model with N = 6 (blue), N = 4 (purple) and N = 3 (red).
(a)-(d) Density (circles) and singly-occupied sites (diamonds) as a function of the chemical potential. Data for N = 4 and
N = 6 have been offset by 0.5nd2 and 1.0nd2 along the vertical axis, respectively. Continuous lines associated to the density
curves correspond to the fit of the EoS calculations to the total density as described in the text. The theory used for the fit is
DQMC for U/t = 2.3(1) and NLCE for the other values of U/t. The results from this fit model are also used to calculate the
expected pair / single site distribution measurement. The chemical potential is defined with respect to the reference half filling
[nd2(µ = 0) = N/2]. For each U/t, we fit the average of 15 frames with similar atom number after center of mass alignment [65].
Error bars are the standard error of the mean (s.e.m.). (e) Temperature according to the fit of the EoS shown in Fig. 2(()a-d).
(f)-(h) Entropy per particle. Horizontal line: entropy in the 2D bulk before loading into the lattice; triangles, squares, hexagons:
entropy in the lattice according to the fit of the EoS; small circles: entropy in the 2D bulk after a round-trip experiment. The
entropy in the bulk takes into account the effect of the interactions and the 3D anisotropic density of states [65]. Error bars
correspond to the s.e.m. of the fit results.

1.2(1) in the 2D bulk before ramping up the lattice.
We fit and benchmark NLCE and DQMC [65] which
are commonly used state-of-the-art methods for finite-
temperature SU(2) Hubbard models in the regime we are
considering but have only recently been extended and ap-
plied to the SU(N) experimental regime, which requires
calculations away from nd2 = 1 [23, 41]. This is, to our
knowledge, the first application of SU(N) NLCE to non-
integer filling, and to the calculation of the occupancy
distributions. Moreover, compared to previous works,
the calculation has been extended to higher orders [65]
to ensure a better convergence at low temperatures. For
U/t = 7.5(4) and 10.4(6) we fit both DQMC and NLCE,
observing an excellent agreement between the theory [65]
and the experiment. For U/t = 33(2), we use NLCE and
a high-temperature series expansion (HTSE-2), observ-
ing also in this case an excellent agreement [65]. For
U/t = 2.3(1), the temperature lies below the range of
convergence of NLCE and we resort to DQMC alone. In
Fig. 2(a-d), for the cases in which we fit more than one
model, we only plot the NLCE results, because the lines
would overlap.

In addition to the total density, in Fig. 2(a-d) we also

characterize the distribution of on-site occupation num-
bers by removing doublons using the pair removal pro-
cess described above. Experimental measurements (dia-
monds) are compared with the NLCE prediction (lines)
based on the fit of the density, without additional free fit
parameters, and agree well with the experimental data
whenever available. As opposed to the N = 2 case,
where only double occupancies are allowed, higher occu-
pancies occur for N > 2. Although the numbers of these
occupancies are small for the results considered at the
temperatures and chemical potentials presented here, the
photoassociation technique can be used to probe triple
occupancies and their dynamics [69].

The harmonic confinement of the trap returned by
the density fit can be compared to the confinement ob-
tained from an independent measurement of the oscilla-
tory motion of the atoms in the combined dipole poten-
tials [65]. We find a discrepancy between about 13% for
U/t = 7.5(4) and 40% for U/t = 33(2), which is not
fully explained by tolerances or the trap loading model.
A possible contribution could be a lack of adiabaticity
during the loading into the lattice [70–72]. However, nei-
ther varying the speed of the lattice ramps up to a fac-
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tor of four (up to 1 s length) nor variations of the atom
number lead to significant changes in the fit results. This
would require the non-adiabatic effects to produce mini-
mal changes in density and parity profiles [65].

In Fig. 2(e) we plot the temperatures obtained by the
fits of the EoS. We observe a smaller temperature for
larger N , a behavior expected due to the Pomeranchuk
effect [30, 73], but somewhat weaker than the ideal the-
oretical predictions [21, 73] with the temperatures for
N = 4 and 6 differing from each other by up to 20%.
We interpret this as a consequence of the heating not
depending on N during the loading process, resulting in
different entropies in the lattice. This is supported by the
results presented in Fig. 2(f-h). We find that, despite the
initial entropy in the 2D bulk before loading into the lat-
tice being independent of N , the entropy returned by the
fit of the EoS is larger for larger N , which explains the
weakening of the Pomeranchuk effect. We also determine
the entropy per particle in the 2D bulk after a round-trip
experiment, which adds an inverted ramp back to the 2D
bulk system. In this case, we obtain entropies compara-
ble to those reported by the fit in the lattice for N = 3
and N = 4 but smaller for N = 6, similar to previous
observations [37] and potentially indicating nonadiabatic
effects in the preparation or return ramp.

Complementary to the measurement of the EoS, the
new possibility to directly access the density in the
2D SU(N)-system allows us to probe the density fluc-
tuations. For an integration area of size A ≫ d2,
the variance of the detected atom number is related to
the isothermal compressibility κ and the temperature T
through the fluctuation-dissipation theorem (FDT) [74]:

var

(∫

A

ndA

)
= kBTκA = kBTA

∂n

∂µ

∣∣∣∣
T

. (2)

By measuring the density fluctuations, we can access
the temperature with spatial resolution, largely indepen-
dently from the EoS models and without relying on fits
of the potential parameters and to the theory [60]. In
Fig. 3(a) we show such density fluctuations as a func-
tion of the chemical potential for different U/t values and
N = 6. For strong interactions, we observe a reduction of
the fluctuations in the proximity of nd2 = 1, where we ex-
pect an incompressible Mott-insulating regime. Notably,
the fluctuation amplitude is determined by area integra-
tion as described in Eq. (2), and therefore agrees with the
thermodynamic fluctuations from the FDT as opposed to
the expected on-site fluctuations δn̂2

0 = ⟨n̂2⟩− ⟨n̂⟩2 (grey
dashed line). This discrepancy illustrates the role of non-
vanishing short-range density correlations.

The FDT holds locally for each density. In thermal
equilibrium, the ratio between the fluctuations and the
compressibility is constant. We use the FDT to check
this assumption and extract the temperature of the sys-
tem. For this purpose, we determine the isothermal com-
pressibility κ(µ) directly from the density profile data

FIG. 3. (a) Measured density fluctuations (blue) for N = 6
as a function of the chemical potential for different interac-
tion strengths. The data points have been obtained from the
variance of 15 frames (same as Fig. 2) computed on spatially-
binned probe areas of size ≈ 5.1×5.1 d2 (4×4 square camera
pixels). The photon shot noise has been subtracted and a PSF
correction has been taken into account [65]. The green line
corresponds to the numerically-differentiated compressibility
κ times the temperature TEoS obtained from the EoS-fit of the
averaged data, while the black dashed line corresponds to the
theory-derived compressibility times TEoS. The vertical line
indicates µ(nd2 = 1). The grey dashed line corresponds to
the on-site density fluctuations δn2

0 = ⟨n̂2⟩ − ⟨n̂⟩2 calculated
with NLCE for TEoS. (b) Comparison of the temperatures
TFDT (dark blue diamonds) and TEoS (light blue hexagons).
Error bars are the s.e.m.

with three-point differentiation and fit the temperature
TFDT as the proportionality factor between the fluctua-
tions and the compressibility. In Fig. 3(b) we compare
TFDT (diamonds) with the temperature TEoS (hexagons)
returned by the fit of the EoS. We observe a good agree-
ment for all interactions. Moreover, we see that the resid-
uals of the FDT analysis typically show similar temper-
atures at the center and at the edge of the cloud, indi-
cating that there are no strong deviations from thermal
equilibrium [65].

In conclusion, we report the measurement of the equa-
tion of state of the 2D SU(N) FHM across the Mott
crossover for temperatures comparable with or below the
hopping energy and we compare the experiment with
state-of-the-art numerical models. Moreover, with direct
access to a single 2D plane system, we can independently
determine temperatures in the experiment with spatial
resolution using density fluctuation analysis, which al-
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lows one to e.g. cross-check thermal equilibrium. This
measurement characterizes the EoS also in regimes hard
to reach by current numerical methods. When compared
to the experimental data, we find the theoretical calcu-
lations describe well the properties of the SU(N) gas for
the applicable range of temperatures. The temperature
measurements also indicate that thermal equilibration is
not inhibited even in the case of deep lattices in a temper-
ature range where the onset of spin correlations between
sites is expected.

The implementation of the directly-accessible 2D en-
semble, together with the accompanying theoretical de-
scription, paves the way towards more direct quantum
simulation of the typically-2D models of interest in natu-
rally occurring systems with SU(N > 2) representations
such as transition metal oxides and orbitally-selective
Mott transitions. An intriguing example is the case of
cerium volume collapse, where there is a long-standing
debate whether the single orbital Hubbard model (N =
2) or the double-orbital Hubbard model (N = 4) [75–78]
is the correct description. While in the condensed matter
examples the SU(N) symmetry is typically only approx-
imately realized, cold atom representations provide an
essentially exact realization of SU(N), allowing to imple-
ment fully SU(N)-symmetric and previously purely the-
oretical models. It should even be possible to smoothly
connect both regimes in a continuous way by controlled
symmetry breaking using e.g. optical state manipulation
or state-dependent potentials [32, 39, 79], but more gen-
erally alkaline-earth-like quantum simulations of SU(N)
FHM can provide insight into the validity of the SU(N)
approximation in more realistic models.
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and M. Köhl, Antiferromagnetic Correlations in Two-
Dimensional Fermionic Mott-Insulating and Metallic
Phases, Physical Review Letters 118, 170401 (2017).

[47] E. Cocchi, L. A. Miller, J. H. Drewes, C. F. Chan, D. Per-
tot, F. Brennecke, and M. Köhl, Measuring Entropy and
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S.I. EXPERIMENTAL TECHNIQUES

A. State preparation

Our experiment starts by loading a spin-balanced un-
polarized mixture (N = 6) of approximately 1.6 × 106
173Yb atoms from a magneto-optical trap into a crossed
optical dipole trap (XODT), where we perform forced
evaporation to T/T 3D

F < 0.2. We then perform a second
stage of evaporation with an optical gradient, leading to
an ensemble of Np ≈ 2 × 103 atoms in the central plane
of a vertical lattice with wavelength λ = 759.3 nm and
lattice spacing dvert = 3.9(3) µm. The vertical band gap

is 3.95(1) kHz, determined from a measurement of the
0 → 2 band resonance with parametric modulation. In
this configuration, the coefficients of the harmonic con-
finement are (κx, κy)d

2 = [1.35(3), 2.23(6)]× h. Numeri-
cal simulations [1] predict that for Np

<∼ 5 × 103, nearly
all the atoms should be loaded in the single central plane
of the lattice. We verify this assumption with a momen-
tum refocussing technique similar to the one described in
Ref. [2].
Mixtures with N = 4 are prepared in the XODT before

the evaporation by optically pumping the population of
the two nuclear spin states mF ∈ {±1/2} to the other
spin states with four circularly-polarized pulses on the
1S0 → 3P1 intercombination line at 50G. Mixtures with
N = 3 are prepared in a similar fashion by pumping the
spin components mF ∈ {±1/2,−3/2} to the other states
with five pulses. In both cases, we check the balancing
of the spin components with an Optical Stern-Gerlach
(OSG) technique in time of flight [3]. The standard devi-
ation of the population of the selected spin components
is below 5% per component for SU(6) and SU(3) and
below 8% for SU(4). The residual fraction of unwanted
spin components is below 5% per component.

B. Lattice loading and Hubbard parameters

The two orthogonal in-plane lattices have the same
depth and they are tuned to the desired value follow-
ing the ramp profile shown in Fig. S1. The ramp speed
has been chosen to minimize the entropy in the round-
trip experiment. After reaching the desired lattice depth,
we quickly switch off the vertical lattice to avoid light-
assisted collisions and to perform in situ imaging.
We calibrate the lattice depths along the two directions

by measuring the band gap between the lowest and the
second excited band with parametric modulation. U and
t are obtained by numerically solving the band structure
for the measured band gap and U is calculated as the
Wannier overlap in the lowest band [4]. The values of
the relevant Hubbard parameters for this work are re-
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FIG. S1. Time dependence of the lattice depth V and the
Hubbard parameters U , κx, κy and t during the lattice ramps.
The lattice depth and the hopping along the spatial x and y
directions are the same.

ported in Tab. S1. We cross-check the calculation by
directly measuring U with modulation spectroscopy for
V = 13Erec (U/t ≈ 43) and 19Erec (U/t ≈ 178). For this
measurement, we first tune the lattice depth to the de-
sired value. We then modulate the depth of both lattices
with an amplitude of 2% to 6% and at the same time
apply the pair removal pulse. For modulation frequencies
resonant with U , atom losses are enhanced. For 13Erec,
we measure U = h · 886(8)Hz for an expected value of
h · 856(8)Hz. For 19Erec, we measure U = h · 1065(8)Hz
for an expected value of h · 1069(9)Hz (Fig. S2).

C. Pair removal

The pair-removal operation is performed with a pho-
toassociation beam working on the 1S0 → 3P1 inter-
combination line, resonant with a molecular transition
detuned by −599.28(8) MHz with respect to the single-
particle transition with a bias magnetic field of 1G. The
beam is coplanar with the lattices and has a power of
30mW. For pair removal, we first ramp the lattice to
the desired U/t value according to the ramps described
in Sec. S.I B, quench the depth to 30Erec in 0.5ms and
then apply the photoassociation pulse for 10ms.

U/t V (Erec) U/h (Hz) t/h (Hz) κxd2/t (10−3) κyd2/t (10−3)

2.3(1) 4.0(1) 398(6) 170(4) 10(1) 13(1)
7.5(4) 7.1(1) 582(9) 78(3) 26(1) 35(1)

10.4(6) 8.0(2) 634(9) 61(2) 38(1) 50(1)
33(2) 12.0(2) 816(11) 25(1) 135(1) 174(1)

TABLE S1. Hubbard parameters for our system. V is the
lattice depth along one direction (both lattices have the same
depth). For U/t = 2.3(1), the next-nearest-neighbor hopping
is h · 12Hz.

The on-site atom number after pair removal is:

nPR =

N∑

α=1

(α mod 2) pα, (S.1)

where pα is the probability of having α particles on a
given site (αpα is the average number of particles on a site

with occupation α and n =
∑N

α=0 αpα) and we neglect
the tunneling during the quench. We correct Eq. S.1 to
take into account the experimental imperfections of the
photoassociation beam:

ñPR ≃ e−γst

[∑

α

(α mod 2) pα

+ e−γdt

(∑

α

2 ⌊α/2⌋pα
)]

, (S.2)

where ⌊·⌋ represents the floor function, γs and γs + γd
represent the decay rate of the singlons and the doublons
and we neglect the fast decay of the states with more
than two particles per site [5]. For γs, γd → 0 we recover
ñPR → nPR.

Efficiency calibration

We calibrate the efficiency of the pair removal by look-
ing at the atom losses as a function of the pulse duration
in the deep Mott insulating regime [U/t = 33(2)]. Ne-
glecting the sites occupied by more than two particles,
we fit a double-exponential model:

Np = e−γst
(
Ns +Nde

−γdt
)
, (S.3)

where Np = Ns + Nd is the total atom number, Ns the
number of singlons, Nd the number of doublons. We ob-
tain 1/γd = 1.2(2) ms and 1/γs = 200(11) ms, which we
find to be independent of N inside the uncertainties (see
Fig. S3). We cross-checked the value of γs by repeat-
ing the same experiment in a small Mott insulator with
≈ 1× 103 atoms and no doublons (inset of Fig. S3). For
a pulse duration of 10ms, we remove all the doublons
within our detection sensitivity and about 5% of the sin-
glons. We take this into account when calculating the
theory curves in Fig. 2.
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cording to the Wannier overlap. Black line: fit of a Lorentzian
function. To enhance the signal-to-noise ratio, data have been
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the insulating phase (inset).

D. Characterization of the potential

1. Trap frequencies

Across the region sampled by the atomic cloud,
the confinement due to the Gaussian lattice beams is
approximately harmonic, such that µ(x, y) = µ0 −
1
2

(
κxx

2 + κyy
2
)
. The two coefficients are determined by

a fit of the EoS for each lattice depth with free parameters
T/t, µ0/t, κxd

2/t, κyd
2/t. We verify that the fourth order

anharmonic correction coming from the Gaussian profile,
calculated for the measured beam waist and power of the
beams, is negligible for the size of the cloud. However,
the values obtained for κx and κy do not fully agree with
the independent measurement of the frequency of the os-
cillatory motion of the atoms in the combined potential.
More specifically, we load a spin-polarized cloud in the
combined potential of the vertical lattice and one in-plane
lattice at a time. We measure the center of mass (COM)
oscillation after an initial displacement of about 5 d along
the lattice direction and we verify that the Rayleigh range
contribution to the combined potential is negligible. A
comparison between the two sets of values can be found
in Fig. S4.

2. Fit comparisons

A possible explanation for the discrepancy in the shape
of the inferred potential described in Sec. S.ID 1 might be
a lack of adiabaticity and equilibration during the tun-
ing of U/t. However, the temperature measured with
the fluctuation-dissipation theorem matches the one ob-
tained from the fit of the EoS. This is not the case if we
use the chemical potential coming from the oscillatory-
motion calibration. In particular, we verify that for this
potential, N = 6 and U/t = 33(2) we obtain a tem-
perature inside the regime of convergence of our theory
models when we use the FDT, but which does not quan-
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FIG. S3. Calibration of the photoassociation beam. Atom
number as a function of the pulse duration for N = 3 (red),
N = 4 (green) and N = 6 (blue). We first tune the lat-
tice depth to 12Erec [U/t = 33(2)] and then quench it to
30Erec before applying the photoassociation pulse. Inset:
Same experiment repeated for a smaller atom number, such
that nd2 ≃ 1 in the center.

titatively match the temperature returned by the fit of
the EoS with the same potential.
Moreover, we verify that the values of κx and κy de-

termined by the EoS fit are robust against atom number
variation (see Fig. S5).
Finally, we observe that κx and κy are also insensi-

tive to the lattice ramp time duration. In Fig. S6 we
show a test which consists of tuning the lattice depth
of an SU(6) sample from zero to 13Erec (U/t ≈ 44)
with a linear ramp of different durations ∆t between
300ms and 1 s. For each ∆t, we fit the EoS with second-
order high-temperature series expansion (HTSE-2) and
leave (T/t, κxd

2/t, κyd
2/t, µ0/t) as free fit parame-

ters. We observe that the values of κx and κy returned
by the fit for different ∆t are compatible among each
other [κxd

2/t = 0.151(2), κyd
2/t = 0.204(3)]. However,

they are incompatible with the ones predicted by the in-
dependent “oscillatory-motion” calibration described in
Sec. S.ID 1 (κosc

x d2/t ≃ 0.109, κosc
y d2/t ≃ 0.131). If we

use these values for the fit, it fails for ∆t = 0.3 s and 0.5 s
and it returns high residuals for ∆t = 1 s, failing to repro-
duce the cloud shape especially in the center [Fig. S6(c)].
We conclude that if the mismatch between the two dif-
ferent harmonic potential parameters comes from a lack
of equilibration during the tuning of the lattice depth,
the time scale to achieve this equilibration significantly
exceeds the experimentally accessible timescales.

3. Anharmonicities

We characterize the anharmonic corrections of the po-
tential by an ensemble with a high temperature T ≫ t
into the lattice and applying the atomic limit model with
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t = 0. In this way, we can generate a spatial map of the
chemical potential and observe that the functional mod-
eling as a harmonic trap is a good approximation. In
particular, we estimate the anharmonic corrections be-
ing less than 0.03µ0 over the whole region of interest in
the deep Mott insulating regime.

E. Imaging techniques

We use saturated in situ absorption imaging on the
stretched 1S0 → 1P1 transition with circularly polarized
light in the presence of a small magnetic field offset ≃ 1G
and a pulse duration of 5 µs. We determine the density
with the modified Lambert-Beer law [6], which accounts
for the high-intensity effects:

n(x, y) =
1

σ

[
log

(
Iin
Iout

)
+

Iin − Iout
Ieffsat

]
, (S.4)

where n(x, y) is the density at pixel position (x, y) and
Iin = Iin(x, y) and Iout = Iout(x, y) are respectively the
incident light and the light after absorption. We cal-
ibrate the effective saturation intensity Ieffsat by varying
Iin/Isat between 2 and 8 (where Isat = πhcΓ/(3λ3) ≃
60mW/cm2 is the saturation intensity of the transi-
tion with wavelength λ and linewidth Γ) and minimiz-
ing the variation of the density profile as described in
Ref. [6]. We find Ieffsat/Isat = 3.0(2) with variations of
less than 5% between spin mixtures. We obtain com-
patible values in the 3D dipole trap, in the 2D bulk
and in the deep Mott insulating regime with variations
smaller than 5%. The effective cross section σ is cali-
brated for each spin mixture by determining the mini-
mum of the compressibility κ = ∂n/∂µ near the insu-
lating regime at nd2 ≃ 1 (see also Fig. S10). We ob-
tain σ/σ0 = [0.310(3), 0.320(3), 0.321(3)] respectively for

1.5 2.0 2.5
Np (103)

0.09

0.14
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2 /t

oscill. motion
EoS fit

1.5 2.0 2.5
Np (103)

0.11

0.17

yd
2 /t

FIG. S5. Dependency of κx and κy with the atom number
Np. Each point corresponds to a single realization with N = 6
and U/t = 33(2). For each realization we fit (T/t, κxd

2/t,
κyd

2/t, µ0/t) with NLCE. Blue lines: values used in the main
text for this U/t ratio. Orange lines: values determined with
the independent “oscillatory motion” calibration.

N = [3, 4, 6], where σ0 = 3λ2/(2π) is the photon res-
onant cross section. As an independent measurement,
we extract the effective cross section from the density
shot noise of a thermal sample in the 2D bulk accord-
ing to the method described in Ref. [7]. In particular
we make use of the fact that ⟨|δn0(k)|2⟩ is proportional
to σNpM2(k), where δn0 are the measured local density
fluctuations per pixel, k is a vector in Fourier space, Np

is the total atom number and M(k) is the modulation
transfer function of the imaging system. By modeling M
with aperture, intensity attenuation and aberrations as
free fit parameters, we determine both σ and M [7]. We
obtain σ/σ0 = [0.35(1), 0.38(1), 0.384(7)] respectively for
N = [3, 4, 6]. We attribute the differences between the
values to cooperative optical response effects at high den-
sities [8, 9].

PSF modeling

The point spread function (PSF) as reconstructed from
M [7] is shown in Fig. S7. The imaging imperfections
are taken into account by convolving the 2D profile of
the density predicted by the theory with the PSF. We
estimate the systematic error in the determination of the
EoS by varying the HWHM of the reconstructed PSF.
Testing the sensitivity of the fit parameter results, we
find that, in the deep Mott insulating regime, where the
effects of the PSF are most relevant, a variation of 50%
in the size of the HWHM causes only a change of 4% in
the entropy [for U/t = 33(2) and N = 6].

F. Fit method and parameters for the EoS

We fit a 2D model of the density with fixed κx, κy and
cross section determined with a separate fit as described
in Sec. S.ID 1 and S.I E. Due to small position fluctua-
tions during imaging, we perform an initial fit of each
image to determine the center of the trap. We use this
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FIG. S6. Robustness of the EoS fit as a function of the
ramp duration. (a) We tune a SU(6) sample to U/t ≈ 44
with a linear ramp of duration ∆t = 0.3 s (green), 0.5 s (red),
1 s (purple). (b) For each ramp duration ∆t, we fit the den-
sity profile assuming an harmonic potential with coefficients
determined by the “oscillatory-motion” calibration (orange)
and by leaving the coefficients free in the EoS fit (blue). Here,
we plot the results of the fit with respect to the spacial radial
profile. For the first two frames, the “oscillatory-motion” fit
fails. (c) Comparison of the harmonic potential coefficients.

to align the centers of the distributions and perform a fit
of the average of several realizations with similar atom
number (15 realizations for the dataset of Fig. 2).

In Tab. S2 we report the values returned by the EoS
fit shown in Fig. 2 and a comparison between different
numerical methods.

The fit results do not take into account the uncertain-
ties on U/t. By fitting different values of U/t to the same
data, we estimate the systematic error on the entropy per
particle and the temperature to be about 1% and 0.015U
respectively.

G. Equation of state for higher temperatures

In Fig. S8 we probe the equation of state as a function
of the initial entropy for N = 6. We increase the entropy
by holding the atoms in the 2D bulk before the lattice
ramps. In this way, we can vary the entropy per particle
s between approximately 1 kB and 2 kB (grey squares).
After loading into the lattices, we fit the density and
compare different numerical methods, including DQMC,
NLCE and HTSE. For high initial entropy and large in-
teractions, the methods agree very well with each other.
For lower initial entropy, first HTSE and then NLCE be-
gin to deviate. We also perform a round-trip experiment
as described in the main text (grey crosses). For large
initial entropies, we observe a good agreement between
the entropies in the lattice and after the round trip ex-
periment, indicating that the increase is mainly occurring
during the ramp up.
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FIG. S7. (a) Reconstructed point spread function (PSF). x
and y have been labeled according to the convention defined
in Fig. 1. The color scale is in arbitrary units and varies
between -1 (blue) and 1 (red). (b) Cuts along the main axes
of the PSF [dashed lines in (a)].

H. Equation of state in the bulk

The entropy per particle in 2D prior to turning on the
in-plane lattices is calculated from a fit of the equation of
state for a weakly-interacting Fermi gas. In particular,
we obtain the temperature from the fit of the in situ
density according to:

n(µ, T ) = −∂Ω

∂µ
= −N

m

2πh̄2β
Li1(−eβµ), (S.5)

where Ω is the grand potential, Li1 is the polylogarithm
of order 1, β = 1/(kBT ), and m is the mass of one 173Yb
atom. The harmonic potential is taken into account in
local density approximation. The effect of interactions
is taken into account by introducing a correction to the
chemical potential [10]:

µint(β) ≈
1

β
[1 + 2g(N − 1)

+4g2(N − 1)(1− log 2)
]
log
(
eβEF − 1

)
, (S.6)

where EF is the Fermi energy and g is the interaction
parameter:

g(n,N) =
1

log 2− 2 log (kFa2D)
. (S.7)

Here, kF =
√

4πn/N is the local Fermi vector and
a2D ≃ 2.5 × 10−3 a0 is the 2D scattering length. The
density-dependency of the interaction parameter is eval-
uated self-consistently in the fit routine similarly to what
has been done in 3D in Ref. [11]. We convolve the pre-
dicted density profile with the PSF to take into account
imaging imperfections. The entropy is calculated from
the temperature returned by the fit and the spectrum of
the 3D non-isotropic harmonic oscillator [12]. We deter-
mine a correction to the entropy due to the interactions
between 5% and 20% compared to the one returned by
the fit of a non-interacting Fermi profile.
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N U/t Np (×103) Method T/t T/U s/kB

3 2.3(1) 1.98(2) DQMC 0.40(4) 0.17(2)
7.5(4) 1.96(2) NLCE-6 1.24(3) 0.167(4) 1.50(6)

NLCE-7 1.24(3) 0.167(4) 1.50(6)
10.4(6) 1.94(3) NLCE-6 1.69(4) 0.163(4) 1.55(6)

NLCE-7 1.69(4) 0.163(4) 1.55(6)
HTSE-2 1.69(4) 0.163(4) 1.56(6)

33(2) 1.99(2) NLCE-6 5.0(1) 0.149(3) 1.51(4)
NLCE-7 5.0(1) 0.149(3) 1.51(4)
HTSE-2 5.0(1) 0.149(3) 1.51(4)

4 2.3(1) 1.99(1) DQMC 0.32(3) 0.13(1)
7.5(4) 1.99(1) DQMC 0.97(3) 0.130(4) 1.61(7)

NLCE-4 0.98(3) 0.131(3) 1.59(6)
NLCE-5 0.94(3) 0.126(4) 1.57(7)

10.4(6) 1.99(1) DQMC 1.36(4) 0.131(4) 1.73(6)
NLCE-4 1.42(4) 0.137(4) 1.73(6)
NLCE-5 1.41(4) 0.136(4) 1.72(6)
HTSE-2 1.43(4) 0.138(3) 1.76(7)

33(2) 1.99(1) NLCE-4 4.62(9) 0.139(3) 1.78(5)
NLCE-5 4.62(9) 0.139(3) 1.78(5)
HTSE-2 4.63(9) 0.139(3) 1.78(5)

6 2.3(1) 1.99(1) DQMC 0.30(1) 0.127(1)
7.5(4) 1.99(1) DQMC 0.91(3) 0.122(4) 1.95(9)

NLCE-3 0.94(3) 0.126(4) 1.97(8)
NLCE-4 0.91(2) 0.122(3) 1.90(7)

10.4(6) 2.05(1) DQMC 1.35(4) 0.131(4) 2.11(8)
NLCE-3 1.40(4) 0.135(3) 2.10(8)
NLCE-4 1.38(4) 0.133(4) 2.08(8)
HTSE-2 1.48(3) 0.142(3) 2.15(9)

33(2) 2.00(1) NLCE-3 3.99(8) 0.120(2) 2.12(6)
NLCE-4 3.99(8) 0.120(2) 2.12(6)
HTSE-2 4.06(8) 0.122(2) 2.13(6)

TABLE S2. Fit parameters for the EoS shown in Fig. 2
and comparison between different methods. For each sam-
ple, we consider 15 shots postselected according to the total
atom number. For HTSE and NLCE methods, the number
indicates the order. The agreement between two consecutive
orders indicates that NLCE has converged. In Fig. 2 we plot
the highest NLCE order if available, DQMC otherwise. The
uncertainties correspond to the values returned by the fit and
do not take into account additional systematic errors.

I. Fluctuations

1. Binning, PSF and shot noise

We spatially bin each frame in square “superpixels”
and compute the chemical potential µ and the local den-
sity variance in each of them.

We take into account the PSF originating from the bin-
ning by measuring the density fluctuations for a SU(6)
thermal cloud (T ≫ TF) in the bulk with the same bin-
ning. For a non-interacting cloud with point-like PSF
and T/TF ≫ 1, var(n̂)/⟨n̂⟩ ≃ 1. The binning low-
ers this ratio, which can be used as a calibration scal-
ing factor for the fluctuations in the lattice. However,
we also take into account additional corrections due to

FIG. S8. Equation of state for high temperature for N = 6.
By varying the hold time in the 2D bulk before ramping up
the lattices, we increase the initial entropy per particle (grey
squares). After loading into the lattice, we perform a fit of
the density obtained by the average of 15 frames with Np ≈
2.2×103 and a s.e.m. of 15 to 35 for each combination of U/t
and hold time, after atom number postselection and COM
alignment. We fit the same datapoint with different methods
and compare the results. We fit DQMC (blue circles), NLCE
of order 4 (orange diamonds) and HTSE of order 2 (green
triangles). After loading into the lattice we perform a round-
trip experiment by symmetrically ramping down the lattices
and measuring the entropy in the bulk (grey crosses). For this
measurement, the vertical bandgap was h × 3.63(1) kHz and
the confinement’s parameters κx and κy have been calibrated
according to the same method presented in the main text (for
N = 6 only).

the temperature and the interactions in the bulk. We
do so by fitting the cloud with a weakly-interacting
model (see Sec. S.IH) and determine T/TF = 1.02(1).
For this temperature and interaction strength, we ex-
pect var(n̂)/⟨n̂⟩ ≡ ξ∞ = 0.69(1) for small densities (see
Fig. S9). The binning to finite-size superpixels intro-
duces an additional correction ξ∞ → ξi, where i is the
linear size of the superpixel. For 4 px× 4 px superpixels,
the size that we use in Fig. 3, we measure the correction
ξ4 = 0.39(1).
In the lattice, we first do the binning, then subtract the

photon shot noise as the average density at the edge of
the region of interest and finally rescale the variance by

the factor
(
ξ4 σ

bulk/σlat
)−1

, which also takes into account
the correction to the cross section described in Sec. S.I E.
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FIG. S9. Fluctuations in the bulk for N = 6. Left: density
variance calculated with superpixels of size 8 px× 8 px. Blue
points: measured density variance. Grey line: for a thermal,
non-interacting cloud var(n)/n = 1. Purple line: theoreti-
cal prediction estimated from the temperature returned by a
non-interacting Fermi fit [T/TF = 1.37(1)]. Green line: theo-
retical prediction according to a weakly-interacting Fermi fit
[T/TF = 1.02(1)]. Orange line: linear fit of the measured den-
sity fluctuations. Right: slope nvar/n = ξi returned by the
linear fit as a function of the superpixel size i [(i × i) px2 is
the superpixel area]. Star (i = 4): superpixel size used in the
lattice.

2. Compressibility

To calculate the isothermal compressibility κ =
∂n/∂µ|T , we first bin the experimental data in 1D as
n(µ) and then numerically perform a 3-point differentia-
tion. Fig. S10 shows the compressibility for the N = 6
dataset of Fig. 3 and a comparison with the datasets for
N = 3 and 4 shown in Fig. 2.

3. FDT Thermometry

In order to extract the temperature from the FDT,
we linearly interpolate the compressibility (Sec. S.I I 2)
to match the binning grid of the density fluctuations
(Sec. S.I I 1) and calculate the local temperature as the
ratio between the local variance and compressibility. The
global temperature TFDT is calculated as weighted aver-
age of the local temperature as a function of the chemical
potential for nd2 > 0.05. In Fig. S11, we show the local
temperature and compare it to TFDT and TEoS for N = 6.

4. Fluctuations for N = 3 and 4

In Fig. S12 and S13 we show the density fluctuations
and the comparison between TEoS and TFDT for N =
4 and 3 respectively. In the case of N = 4, we show
a dataset with a larger number of frames compared to
what has been used in Fig. 3 (35 frames instead of 15)
with similar s.e.m. in the total atom number to narrow
down the error bar on TFDT and allow for a more precise
comparison.

nd2
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0.75

1.00

/
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nd2
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FIG. S10. Isothermal compressibility κ = ∂n/∂µ|T for
N = 3 (red), N = 4 (purple), and N = 6 (blue). κ̃0 is the
compressibility of a SU(6) non-interacting gas at zero temper-
ature. For each combination of N and U/t, we numerically
differentiate the density with respect to the chemical poten-
tial. The dataset is the same as Figs. 2 and 3. Points corre-
spond to the differentiation of the experimental data and lines
correspond to the differentiation of the theoretical curves.

S.II. NUMERICAL METHODS

In this section we present details of the DQMC and
NLCE calculations used for results in the main text, in-
cluding estimates of systematic errors, and a derivation
of the HTSE.

A. Determinantal Quantum Monte Carlo

Averages of the thermal equilibrium observables are
evaluated with Determinantal Quantum Monte Carlo
(DQMC) [13, 14] on 6×6 lattices by introducing N(N −
1)/2 auxiliary Hubbard-Stratonovich fields, one for each
interaction term [15, 16] 1. In this method, the in-
verse temperature β is discretized in steps of ∆τ (Trotter
steps). Results in the main text use ∆τ = 0.05/t. We
obtain DQMC data for 5 different random initial seeds
for U/t = 7.43, 10.38 and for 20 different random seeds

1 Previous work applied DQMC for the SU(2N) Fermi-Hubbard
model at half-filling, i.e. ⟨n⟩ = N/2, using an alternative
Hubbard-Stratonovitch decomposition. This alternative decom-
position is free of the sign problem at half-filling for SU(2N) [17–
20].
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FIG. S11. Local temperature for the N = 6 dataset shown
in Fig. 3. Blue line: temperature according to the fit of the
EoS. Red line: temperature according to the fit of the FDT.
Vertical line: µ(nd2 = 1). The local temperature for small
and large densities is in general comparable, hinting at global
thermal equilibrium.

for U/t = 2.34. For each Monte Carlo trajectory we per-
form 2000 warm up sweeps through the whole space-time
lattice and 8000 sweeps for measurements. Furthermore,
we use 4 global moves per sweep to ensure ergodicity [21].

In addition to statistical errors, (controllable) system-
atic errors can arise from the finite Trotter step, finite-
size effects, and imperfect equilibration of the Monte
Carlo algorithm before measurement. The Trotter error
obtained by comparing ∆τ = 0.04/t and ∆τ = 0.05/t
results is <∼ 0.03 t for the temperature and <∼ 0.06 kB for
the entropy across all N and U/t considered. These cor-
respond to relative errors that are <∼ 8%, and in all cases
are smaller than the statistical error bars 2. The finite-
size error assessed by taking the difference of temperature
and entropy obtained from fits using results from 4 × 4
and 6 × 6 lattices is <∼ 0.04 t for the temperature and
<∼ 0.03 kB for the entropy for all N and U/t considered,
except forN = 6 at U/t = 2.34 where the errors are 0.07 t
and 0.13 kB. The equilibration error is negligible in the
homogeneous case and was estimated by comparing re-
sults using 2000 and 8000 warm up sweeps. This error is
<∼ 0.002 for the density and <∼ 0.04 t for the energy across
all chemical potentials considered in the homogeneous
case.

DQMC results are calculated on a grid of µ and T ,
which can also introduce systematic errors into the fits
of the experimental equation of state measurements to
theory. We use a grid with dµ = 0.25 t and dT/t ∼ 0.05
for T/t ≤ 0.6, and dT/t ∼ 0.1 for 0.6 ≤ T/t ≤ 1.5.
Effects due to the coarseness of the µ grid were estimated
by considering differences of temperature and entropy fits
using dµ = 0.25 t and dµ = 0.5 t and are <∼ 0.007 t and
<∼ 0.05 kB.

2 For results at U/t = 7.43 and 10.38, relative errors are ∼ 1%.
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FIG. S12. (a) Measured density fluctuations (purple) for
N = 4 as a function of the chemical potential for different
interaction strengths. The data points have been obtained
from the variance of 35 frames according to the same binning
and evaluation method of Fig. 3. The green line corresponds
to the numerically-differentiated compressibility κ times the
temperature TEoS obtained from the EoS-fit of the averaged
data. The vertical line indicates µ(nd2 = 1). The dashed line
corresponds to the on-site density fluctuations δn2

0 = ⟨n̂2⟩ −
⟨n̂⟩2 calculated with NLCE for TEoS. (b) Comparison of the
temperatures TFDT (dark purple diamonds) and TEoS (light
purple squares). Error bars are the s.e.m.

Convergence criteria correspond to the lowest T/t for
which fluctuations in entropy for two consecutive µ data
points still fall within statistical error bars.

B. Numerical Linked Cluster Expansion

Thermodynamic observables are computed using site
expansion Numerical Linked Cluster Expansion (NLCE)
up to seventh order (seven sites) for SU(3), fifth order for
SU(4) and fourth order for SU(6) Fermi-Hubbard mod-
els. A brief discussion of the algorithm is presented be-
low. Extensive properties of a lattice L are computed by
performing a weighted sum of the property values over
all embeddable clusters c [22, 23]. Formally,

P (L)/Ns =
∑

c⊂L
L(c)WP (c) (S.8)

where P (L) is the lattice property, Ns is the number of
lattice sites, L(c) is the number of ways per site the clus-
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FIG. S13. (a) Measured density fluctuations (red) for N = 3
as a function of the chemical potential for different interac-
tion strengths. The data points have been obtained from the
variance of 15 frames according to the same binning and eval-
uation method of Fig. 3. The green line corresponds to the
numerically-differentiated compressibility κ times the temper-
ature TEoS obtained from the EoS-fit of the averaged data.
The vertical line indicates µ(nd2 = 1). The dashed line cor-
responds to the on-site density fluctuations δn2

0 = ⟨n̂2⟩−⟨n̂⟩2
calculated with NLCE for TEoS. (b) Comparison of the tem-
peratures TFDT (dark red diamonds) and TEoS (light red tri-
angles). Error bars are the s.e.m.

ter c can be embedded in the lattice L, and the weights
WP (c) are defined as

WP (c) = P (c)−
∑

s⊂c

WP (s) (S.9)

where P (c) is computed by performing exact diagonal-
ization of the Hamiltonian in Eq. 1 defined over the clus-
ter c. The Hilbert space dimension grows exponentially
with both system size Ns and number of spin flavors N .
We use spin flavor conservation symmetry to reduce the
Hilbert space dimension as mentioned in Ref. [15].

Note that Eq. S.8 follows from Eq. S.9 applied to c = L.
The NLCE works by truncating Eq. S.8 to a finite order
(finite number of sites in the clusters included), which
yields accurate results when correlation lengths are suf-
ficiently short, as happens when temperature is not too
low. The NLCE is typically much more accurate than ex-
act diagonalization employing the same number of sites.
See the Appendix of Ref. [15] for a comparison of bare ED
and NLCE for the SU(N) Hubbard model. The NLCE
converges to lower temperatures when the density is an
integer, and when U/t is larger. For both cases, the sys-

tem has shorter-ranged correlations at a fixed tempera-
ture and thus the system properties are captured by small
clusters.
The only error in the NLCE arises from truncating

Eq. S.8 to finite cluster size. We evaluate this by com-
paring properties calculated with successive orders of the
NLCE approximation. When two orders of NLCE con-
sistently agree, generally the result is converged and the
value equals that in the thermodynamic limit [23].
The NLCE was computed over T/t grid of 500 points

linearly spaced in the range [0.5, 10], i.e. dT/t ∼ 0.02.
The µ/t grid was varied for different U/t and N such
that the density, ⟨n⟩ ∈ [0, N/2]. For each U/t and N ,
there are 500 µ/t-points. In the main text (Fig. 2), the
chemical potential is re-scaled with U , thus the µ-spacing
dµ/U varies between 0.01 and 0.02. The choice of the
temperature and chemical potential grids was made to
get a dense enough grid to get small fit errors to the
experimental data (Fig. 2).

C. High Temperature Series Expansion

We also present results from a second-order high tem-
perature series expansion (HTSE) in t/T which is ac-
curate for T >∼ t. In the following, subscripts are used
to indicate the expansion’s order in t/T for the different
physical quantities ⟨O⟩ℓ.

1. Zeroth-order HTSE (t = 0)

The energy as a function of the occupation of a single
site in the grand canonical ensemble is given by,

ϵ0(n) =
U

2
n(n− 1)− µn+ gδn,α, (S.10)

where we introduced the last term to allow extraction of
the pα by differentiating the partition function with re-
spect to g. The partition function for the single site is
given by z0 =

∑N
n=0

(
N
n

)
e−βϵ0(n), and the grand canoni-

cal free energy per site is Ω0 = −T ln z0. For compact-
ness, we define y = e−βU , x = eβµ, and w = e−βg.
In the zeroth-order HTSE ⟨pα⟩0 = limg→0

∂Ω0

∂g , which
gives

⟨pα⟩0 =

(
N
α

)
y

1
2α(α−1)xα

∑N
n=0

(
N
n

)
y

1
2n(n−1)xn

. (S.11)

The density ⟨n⟩0 and number of on-site pairs ⟨D⟩0 =
⟨n(n − 1)/2⟩0 are related to ⟨pα⟩0 via ⟨n⟩0 =∑N

α=1 α⟨pα⟩0, and ⟨D⟩0 =
∑N

α=2

(
α
2

)
⟨pα⟩0.
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2. Second-order HTSE

The first correction to the free energy is second-order
in t/T , i.e. Ω2 = Ω0 + ∆Ω [24], where ∆Ω is presented
in Refs. [5, 25, 26] for g = 0. For general g we find

−β∆Ω = qN

(
βt

z0

)2
[
1

2

N∑

n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2wδα,n+δα,n−1

− 1

βU

∑

n ̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2 [n(n−1)+(m−1)(m−2)]wδα,n+δα,m−1

n−m

]
, (S.12)

where q is the coordination number. Following the same procedure as before, ⟨pα⟩2 = ⟨pα⟩0+⟨∆pα⟩, where ⟨∆pα⟩
is given by ⟨∆pα⟩ = limg→0

∂∆Ω
∂g , yielding

⟨∆pα⟩ = qN

(
βt

z0

)2
[
1

2

N∑

n=1

(
N − 1

n− 1

)2

x2n−1y(n−1)2
(
− 2⟨pα⟩0 + δα,n + δα,n−1

)

− 1

βU

∑

n ̸=m

(
N − 1

n− 1

)(
N − 1

m− 1

)
xn+m−1y

1
2 [n(n−1)+(m−1)(m−2)]

n−m

(
− 2⟨pα⟩0 + δα,n + δα,m−1

)
]
.

(S.13)

The second order expectations ⟨n⟩2 and ⟨D⟩2 are re-

lated to ⟨pα⟩2 via ⟨n⟩2 =
∑N

α=1 α⟨pα⟩2, and ⟨D⟩2 =∑N
α=2

(
α
2

)
⟨pα⟩2, respectively.
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