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Sub-dimensional magnetic polarons in the one-hole doped SU(3) t-J model
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The physics of doped Mott insulators is at the heart of strongly correlated materials and is
believed to constitute an essential ingredient for high-temperature superconductivity. In systems
with higher SU(N) spin symmetries, even richer magnetic ground states appear at a filling of one
particle per site compared to the case of SU(2) spins, but their fate upon doping remains largely
unexplored. Here we address this question by studying a single hole in the SU(3) ¢-J model, whose
undoped ground state features long-range, diagonal spin stripes. By analyzing both ground state and
dynamical properties utilizing the density matrix renormalization group, we establish the appearence
of magnetic polarons consisting of chargons and flavor defects, whose dynamics is constrained to
a single effective dimension along the ordered diagonal. We semi-analytically describe the system
using geometric string theory, where paths of hole motion are the fundamental degrees of freedom.
With recent advances in the realization and control of SU(N) Fermi-Hubbard models with ultracold
atoms in optical lattices, our results can directly be observed in quantum gas microscopes with
single-site resolution. Our work suggests the appearance of intricate ground states at finite doping
constituted by emergent, coupled Luttinger liquids along diagonals, and is a first step towards

exploring a wealth of physics in doped SU(N) Fermi-Hubbard models on various geometries.

Introduction.— The physics of doped Mott insula-
tors, dominated by the intricate competition between
kinetic and interaction energies, is at the heart of
strongly correlated physics. For two-flavor spins, the two-
dimensional (2D) SU(2) symmetric Fermi-Hubbard (FH)
model represents a paradigmatic model believed to cap-
ture some essential physics of high-temperature super-
conducting cuprates [1, 2]. Nevertheless, though tremen-
dous progress has been made both numerically [3-9] and
experimentally [10-18], the microscopic mechanisms be-
hind many of the phases appearing in the FH model re-
main to be fully understood.

Higher spin symmetries, realized by SU(N > 2) in-
variant models, promise rich physics beyond the SU(2)
paradigm [19-28]. In addition to novel magnetic states
and enhanced quantum fluctuations, they separate fea-
tures that are linked in the vanilla SU(2) Hubbard model:
perfect nesting and van Hove singularities at one par-
ticle per site are absent, in contrast to the SU(2) FH
model. At unit filling (7) = 1, the SU(3) FH model has
been shown to feature rich magnetic structures of various
translation symmetry breaking patterns, where in par-
ticular finite repulsive interactions U > 0 are necessary
to open a charge gap and observe magnetically ordered
Mott insulating states [23, 24, 29-31]. In the strongly
coupled regime, effective mappings to SU(3) Heisenberg
models at (7) = 1 reveal a 3-sublattice (3-SL), diagonally
striped magnetic order, stabilized by quantum fluctua-
tions through an order by disorder mechanism [32, 33].

An important setting for the SU(N) FH model is ultra-
cold alkaline-earth-atoms (AEAs), where a highly precise
SU(N) symmetry arises from the near-perfect decoupling

of nuclear spins from the electronic structure due to their
closed shells [34-38]. Using fermionic isotopes of ®'Sr
and '"™Yb, recent ultracold atom experiments have suc-
cessfully observed Mott insulating states [39-41], nearest-
neighbor (NN) antiferromagnetic correlations [42, 43], as
well as measured the equation of state in the SU(6) FH
model [44].

While the intricate magnetic structures of SU(N)
Heisenberg magnets have been studied with increased in-
terest [45—49], the physics of doped SU(N) Mott insula-
tors remains widely unexplored. Studying doped Mott
insulators with higher spin symmetries promises novel
insights into the competition between spin and motional
degrees of freedom, possibly helping to unravel the mi-
croscopic nature of hole pairing in strongly correlated
electronic systems.

In this letter, we utilize tensor network methods to
study the singly doped SU(3) ¢-J model, both in and
out of equilibrium. We establish the appearence of mag-
netic polarons consisting of chargons and flavor defects
(SU(3) spinons), whose dynamics is constrained to a sin-
gle effective dimension along the ordered diagonal. We
demonstrate how this sub-dimensional phenomenology is
qualitatively captured within non-linear geometric string
theory after including both chargon and spinon fluctua-
tions of the magnetic polaron. Our results can be directly
probed with ultracold AEAs paired with quantum gas
microscopes with single-site resolution [50-52], paving
the way towards exploring a wealth of exotic physics in
doped SU(N) symmetric systems.

The model.— In the limit of strong on-site repulsion,
the hole-doped 2D SU(3) symmetric FH model as realized



by AEAs in sufficiently deep lattices at density (n) < 1
reduces to the SU(3) symmetric ¢-J model on the square
lattice. Neglecting three-site terms, the corresponding
Hamiltonian reads
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Here, é;r,a (é1,o) are creation (annihilation) operators
of flavor a = {R,G,B} on site i, (i,j) denotes near-
est neighbors on the 2D square lattice, n; are the lo-
cal particle densities, and P is the Gutzwiller operator
projecting out states with local occupancy > 1. Note
that for N = 2, the second part of Eq. (1) reduces to

J2<i’j> (Q, . QJ- — ﬁiﬁj/ll) as in the usual t-J model, with

S; the spin-1/2 operators [53]. For a single hole, the
density-density interaction in Eq. (1) merely leads to a
constant energy shift (up to boundary effects) and is ne-
glected in the following [54].

Ground state.— We simulate the ground state of
the one-hole doped SU(3) ¢-J model, Eq. (1), using the
density matrix renormalization group (DMRG) [55-59].
We implement separate U(1) particle conservation sym-
metries for each flavor, and simulate systems of size
L, x L, =9 x 5. Using bond dimensions of x = 5000,
we carefully ensure convergence of all observables. In
the undoped case, open boundary conditions (OBC) have
been identified as crucial to observe a diagonally striped
ground state in numerically available systems sizes and
were argued to capture the physics of the thermodynamic
limit more accurately than periodic boundaries [33, 54].
Therefore, also in the case of the hole-doped SU(3) t-J
model, we focus on OBC along both x— and y— direc-
tions in the following.

By introducing local chemical potentials
—lip Zieedge fla;,i at the short edges of the system,
we explicitly break the SU(3) symmetry and pin a
3-sublattice (3-SL) stripe order along the diagonal,
indicated by colored lines in Fig. 1 (a). We introduce
a single hole into the system by removing a particle
corresponding to the flavor of the central site iy in a
(classically) ordered background. For the pinning shown
in Fig. 1, this corresponds to the symmetry sector
Ng=Ng=L,L,/3, Nx = L,L,/3—1, where N, is the
total particle number of flavor & = R (red), G (green),
B (blue).

The hole density distribution of the ground state de-
termined by DMRG, (Al') = 1 — 3 _ (Ag), is shown in
Fig. 1 (a) for t/J = 1.5. The hole density features a
pronounced anisotropy, whereby its distribution has en-
hanced weight on the diagonals aligning with the pinned
order. On the other hand, the hole density is suppressed
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FIG. 1. Single hole ground state. (a) DMRG results of
the hole density distribution (Af') for a single hole (missing
red atom) doped into a magnetic background pinned at the
edges (indicated by the colored circles along the edges), for a
Lo x Ly =9 x5 system with open boundaries, ¢/J = 1.5, and
pinning fields p,/J = 1. The hole distribution is anisotropic,
such that the hole spreads further along the diagonal spin
stripes than perpendicular to them. The full on-site moment
distributions (ﬁ{), f =h,R,G B, are shown in gray, red, green
and blue, respectively, in (b). The 3-SL diagonal stripe order
pinned by the local chemical potentials on the boundaries is
indicated by the solid colored lines in (b).

on the anti-diagonals, i.e, directions that are perpendicu-
lar to the 3-SL order. This is corroborated in Fig. 1 (b),
where the full on-site moments (ﬁfc ), for f =h (hole), R
(red), G (green) and B (blue) are shown. Importantly,
the delocalization of the hole only slightly disturbs the
magnetic background in its vicinity, leaving the overall 3-
SL order intact, as illustrated by the solid colorful lines
in the lower left corner of Fig. 1 (b).

Geometric string theory.— In the following, we de-
scribe the doped hole in the 3-SL background using non-
linear geometric string theory (NLST) [60, 61] and estab-
lish the formation of a sub-dimensional magnetic polaron
whose motion is predominantly aligned with the ordered
background. The starting point is a parton represen-
tation of the SU(3) ¢-J model, where the creation and
annihilation operators are decomposed into bosonic char-
gons (iLl) and fermionic spinons (fi,a), Cia = ﬁjfl o The
spinon label a corresponds to the flavor of the i)article
that has been removed. The single occupancy constraint
in the ¢-J model is ensured via ) fl,ifmi + ﬁfﬁl =1 for
all i.

We describe the magnetic polaron within the geomet-



(a) String picture in classical background (b) NLST+TB
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FIG. 2. Non-linear string theory. (a) Illustration of hole motion through a classically ordered SU(3) background. When
hopping, the hole leaves behind a string ¥ of displaced spins. The first hop is confining due to positive spin-spin correlations
along the diagonal — leading to the formation of a spinon, see the ocher ellipse in the lower left panel. Subsequent hops along
the diagonals, however, lead to classically degenerate configurations and paths of no additional energy cost (yellow). The full
energy landscape is illustrated on the Bethe lattice in the right panel. (b) We describe chargon fluctuations within the FSA.
String state energies are determined by a sum of particle exchange correlations C(i,j) of the undoped ground state, where i, j
become neighbors after the hole is displaced through the string (upper panel). Spinon fluctuations are included by considering
dominant off-diagonal couplings (lower panel), leading to an effective 1D spinon Hamiltonian on the diagonal. (c) The resulting
hole density distribution when including both chargon and spinon fluctuations, matching DMRG results presented in Fig. 1.

ric string basis: By doping a single hole at position j®
into the ground state |¥g) of the undoped SU(3) Heisen-
berg Hamiltonian, we define the state |j*,a, X = 0)
oy |¥o). To describe the partons, we work in the
regime t/J > 1, where fluctuations of the chargon and
the ordered background approximately decouple. In a
first step, we fix the initial hole position j°, and de-
scribe the fast chargon fluctuations on time scales ~
1/t. Motivated by the separation of energy scales, we
work in the frozen spin approximation (FSA): When
the hole fluctuates, the background spins are displaced
and their positions change, however their quantum state
is assumed to remain unaffected. This generalizes the
notion of squeezed space [62—64] to two dimensions.
By displacing particles in real space, the hole mo-
tion changes the underlying geometry of the lattice in
squeezed space, whereby nearest neighbor (NN) pairs in
squeezed space can become next-nearest neighbor (NNN)
or even larger-distance pairs. String states are defined
by |j*, o, X) = Gs. li*, @, X = 0), where the string opera-

tor Gy, = H(i,j)eE (ﬁjﬂj Yoa ﬁafi,a) displaces the back-
ground spins along string 3.

The string states and the tunnel coupling between
them can be mapped to a Bethe lattice, illustrated in
Fig. 2 (a) for a classical spin background. In particu-
lar, each string of displaced particles ¥ can be associ-
ated with a corresponding potential energy on the Bethe
lattice, E(j*, %) [65]. Alignment of flavors along the di-
agonals surrounding the hole leads to an energy penalty
AFE ~ J when the hole leaves its initial position and
moves by one lattice site, leaving behind a flavor defect
(spinon) at j® [see the ocher ellipse in the lower left panel
of Fig. 2 (a)]. After its initial hop, however, the en-

ergy landscape for subsequent chargon motion loses its
isotropy. In particular, paths along the diagonally or-
dered background merely lead to local flavor exchanges
along the string, which is classically degenerate with the
initial 3-SL order. This, in turn, leads to the existence
of string segments of no additional energy cost, illus-
trated by yellow paths on the Bethe lattice in the right
panel of Fig. 2 (a). Directions perpendicular to the diag-
onal stripe order, in contrast, are associated with linearly
growing magnetic energy (linear confinement), shown by
red paths in Fig. 2 (a). Negative energy differences (gray
lines) result from loop effects.

In the case of a classical background, string states
lj¥, @, X)) are mutually orthonormal except for special
loop configurations which restore the ordered back-
ground, known as Trugman loops [60, 61, 66]. In the
case of a (classical) diagonally striped background, these
configurations involve at least 12 string segments (corre-
sponding to three loops around a square plaquette), and
are hence negligible compared to the exponential number
of string states. Due to strong diagonal-order correlations
in the undoped SU(3) t-J model [54], we expect that the
approximation of mutual orthonormality of string states
remains accurate away from the classical limit.

Our first step to go beyond the classically ordered mag-
netic background is to use the FSA: Upon creation of the
hole, the background spins are labeled according to their
original positions. When the hole moves, the particles
are displaced and their positions change, resulting in en-
ergies E(j*,X) of string states |j®, o, ¥) that depend on
correlations C(i,j) = >, 5 <\I/0|ﬁéi¥7i65,iég7jéa’jﬁ|\llo> /2
of the undoped ground state; see the upper panel of
Fig. 2 (b) for an explicit illustration for |X| = 1. The



effective Hamiltonian reads
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(£,%)

+§:E

Hcharge (.] O[

2)i% e, %) (%0, %],

with  (X,%¥')  denoting two neighboring sites
on the Bethe lattice. The ground state of
the chargon Hamiltonian, Eq. (2), is given by
|Ueharge (3%, @) = g Cé,hdzrge li*,, ), with corre-

sponding energy Echarge(js). Though the Bethe lattice
within NLST features anisotropic confining potentials,
we find that the mere kinetics of the fast chargon does
not account for the strong diagonal alignment of the hole
density seen in DMRG simulations; hole delocalization
around the spinon is almost isotropic, forming a bound
magnetic polaron [54].

Instead, it is the effect of spinon fluctuations on
time scales o< 1/J that lead to the observed alignment
along the diagonal in Fig. 1 (a), which we include on
top of chargon fluctuations by using a tight-binding
description of spinon motion (NLST+TB). Concretely,
we consider off-diagonal couplings J(j*, jS/;E,E’) =
<jsl,oz, E’|7:£|j5,a, Y) within the geometric string basis
construction to describe spinon fluctuations. Owing to
the Hamiltonian’s U(1)®N particle conservation symme-
try, applying H to string states |j®, o, X) conserves the
flavor of the removed particle o. This results in a dom-
inantly diagonal NNN hopping of the spinon, illustrated
in the lower panel of Fig. 2 (b). Here, a particle exchange
of two spins in a given string state results in configura-
tions |j°* £ d, o, X’), with d = e, — e, pointing along the
diagonal and |¥'| = |X| — 2. Due to finite overlaps be-
tween string states with different initial hole positions
j°, the spinon hopping is reduced by a Franck-Condon
factor vpc, leading to an effective diagonal hopping of
J* &~ vpcJ/2 [54, 61], where vpc = 1/2 in the limit
t/J > 1.

More formally, for each initial hole position j* we
make a strong coupling Born-Oppenheimer-type product
ansatz (5, 0)) = [Veparge(is0)) @ [Tapinon (5, @) ©
|\I/0>Sq describing the chargon, spinon and background
state in squeezed space, respectively. Our trial state
is then given by a superposition of composite spinon-
chargon states for varying j°,

U= D e a)

j°eD

Z wspmonzwcharge -s >
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We make an additional approximation and determine
P from an effective 1D single particle tight-binding
description on the central diagonal (D) with hopping J*

and on-site energies Echarge( ?) [54]. The density in the
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FIG. 3. Hole dynamics. Time evolution of an initially
localized hole at ip = [4,2]. Mean Manhattan distances along
the diagonal (anti-diagonal) are shown in blue (red) for a
L, x Ly = 9 x 5 system. Light red and blue lines show
NLST+TB results for an infinite system with vpc = 0.5.

ground state is determined by mapping |w5pm°nw;hmge|2

back to the original real space lattice, shown in Fig. 2 (c).
Note that we treat vpc as an effective free parameter
of the theory, matching DMRG results strikingly well
for vpc = 0.1. This agreement corroborates the valid-
ity of NLST+TB, and supports the existence of a sub-
dimensional magnetic polaron in the singly doped SU(3)
t-J model. Our additional DMRG simulations [54] fur-
ther support this picture, whereby the anisotropy in the
hole density is seen to increase for rising exchange inter-
actions J/t, while a dominating hopping J/t < 1 leads to
the formation of a broad, isotropic polaron cloud. Lastly,
we note that while the Hilbert space spanned by the
string states grows exponentially, a systematic cutoff of
chargon states far away from their initial position on the
Bethe lattice allows for an efficient calculation of hole
density distributions.

Dynamics. — To further study the behavior of the
magnetic polaron in the SU(3) t-J model, we analyze
quenched hole dynamics, which is particularly accessible
to ultracold atom experiments and has been probed for
a single hole doped into an SU(2) AFM background [67].
Specifically, we analyze the hole’s dynamics after dop-
ing it in the center iy of the undoped ground state,
ie., at time T = 0, the initial state is |¥(T =0)) =
lig, o, ¥ = 0). We use the global subspace expansion [68]
for a single time step, before switching to time dependent
variational principle calculations [69]. During the time
evolution, we track the Manhattan distance (Z,) from
ip along the diagonal and anti-diagonal. At short times,
fast chargon fluctuations lead to a symmetric, ballistic
expansion of the hole, see Fig. 3. At times Tt ~ 1, a rapid
slow down and apparent saturation of the hole’s spread
is observed, reminiscent of dynamics in the SU(2) ¢-J
model [67, 70-72]. Here, it has been established that the
hole’s long-time dynamics is governed by spinon dynam-
ics, i.e., by the motion of the heavy composite magnetic
polaron itself. The strong splitting between diagonal and



anti-diagonal distances appearing in the SU(3) system at
times Tt ~ 1, shown in Fig. 3, further underlines the role
of spinon delocalization in the observed anisotropy.

We describe the dynamics of the magnetic polaron
within geometric string theory by again assuming a state
of the form Eq. (3). As the MPS calculations are limited
to small system sizes with OBC, we here focus on infi-
nite systems (i.e. we do not consider the open boundaries
when constructing the string basis) to make predictions
of the dynamical formation and motion of the polaron in
the thermodynamic limit. Results are shown in Fig. 3
with blue and red solid lines, where all qualitative fea-
tures are in line with finite-size MPS simulations. At
short times we find quantitative agreement. However, the
anisotropy developing later in time is seen to be underes-
timated within the string theory, which is likely caused by
significant finite size effects in the MPS dynamics (being
particularly prominent as we are focusing on observables
along the diagonal). In fact, motivated by the picture of
a polaron effectively constrained to 1D, in the thermo-
dynamic limit we expect a linear expansion (saturation)
of Z,, along the diagonal (anti-diagonal) at large times,
which is, however, out of reach to simulate with current
methods.

Discussion. — We have studied the one-hole doped
SU(3) t-J model both in- and out of equilibrium. In the
ground state, we observed anisotropic hole delocalization,
and established the formation of a sub-dimensional po-
laron by combining chargon and spinon fluctuations in
an effective theory. This picture was further corrobo-
rated in calculations of the dynamics initiated from a
localized hole, which can provide a direct probe of the po-
laron physics in SU(NV) ultracold atom experiments once
single-site resolution becomes available. In our setting
of a doped SU(3) AFM, we have demonstrated how sub-
dimensional excitations naturally emerge, reminiscent of
mobility restricted fractons as appearing e.g. in three
dimensional X-cube models [73, 74].

Based on our study of a single hole, we propose that
SU(3) AFMs on the square lattice at finite doping are
described by weakly coupled Tomonaga-Luttinger (TL)
liquids of bound spinon-chargon polarons along the diag-
onals,

7:[95 = 27:1177 +
D;
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where Hp, is the Hamiltonian of a 1D TL liquid [75]
on the i’th diagonal D;, 7:[%‘?,@]_ is the (weak) interac-
tion between chains D; and D;, and the last term de-
scribes particles with quasi-momentum k,, hopping be-
tween the diagonals. In particular, in the absence of
inter-chain couplings in Eq. (4) we predict the appear-
ance of power-law correlations of charges along the di-

agonal order, (ﬁz_%y_zﬁ;"y) o £~%, while correlations
perpendicular to the stripe order are short-range with
exponential decay, (Al , . Al ) o e”*. Though inter-
chain interactions are a relevant perturbation of the TL
liquid, we still expect these scalings over intermediate

length scales for finite couplings.
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Supplementary Materials: Sub-dimensional magnetic polarons
in the one-hole doped SU(3) t-J model

1. The SU(N) t-J model

We here show that in the case of N = 2, Eq. (1) in the main text is equivalent to the standard ¢-J model without
next-nearest neighbor terms,

f=—t 3 P (il oy +he) Py (ss +SVeY 4 887 - 1nn> . (s1)

4 J
(L), (i.d)
Using Sl” =23 o é;aoga,éi}a, with o# (4 = x,y, z) the Pauli matrices, the second part of Eq. (S1) reads
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which can be rewritten to
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This corresponds to Eq. (1) in the main text. We note that in our calculations, we only implement the hopping and
exchange term, i.e., the density-density interaction —J/2 (i.j) NNy is not considered. In the case of a single dopant,
this only constitutes a constant energy shift in the Hamiltonian in the thermodynamic limit.

2. Geometric string theory

In this section, we give a more detailed explanation of the non-linear geometric string theory for the doped SU(3)
t-J model. As described in the main text, we describe chargon fluctuations within the frozen spin approximation
(FSA) in a first step, before adding spinon motion on top in a tight-binding manner.

Chargon fluctuations. The crucial ingredient in order to describe fluctuations of the chargon around its initial
position j* within NLST are magnetic correlations of the undoped system,

C(i.j) = (WolPél 1ép1eh ;60PIW0) /2, (S4)
o,B

where |Ug) is the ground state with one particle per site. Fig. S1 shows correlations for a fixed reference site
i= [z =4,y =2] in the center of the finite-size system we study by DMRG. Following the 3-SL order of the ground
state, sites are correlated positively along every third diagonal; nearest neighbor correlations, in contrast, show strong
negative signals. When a hole is added at initial position j° and then hops away, assuming a frozen spin background
it reshuffles the particles in its vicinity, leading to an energy cost that can directly be evaluated from correlations
given by Eq. (54).

For instance, if a hole initially placed in the center j®* = [4,2] moves up by one lattice site, the corresponding
change in magnetic energy is given by AE/J = C(i = [3,2],j = [4,3])) + Ci=[5,2],j = [4,3) + C(i = [4,1],j =
[4,3]) —C(i=1[4,4],j=1[4,3]) —C@i=1[53],j=[4,3]) — C(i=13,3],j = [4,3]) = 0.97. Using correlations Eq. (54),
all energies on the Bethe lattice are calculated this way, depicted in Fig. S1 (b) for j* = [4, 2]. Note that this includes
the effect of open boundary conditions within NLST. Additionally, if the hole moves outside the finite system’s frame,
the site is cut off from the Bethe lattice [in Fig. S1 (b), a Bethe lattice depth of d = 3 is considered. The two sites
corresponding to strings (up, up, up) and (down, down, down) lie outside the frame and are thus cut off]. Energies of
string configurations (diagonal matrix elements of a string configuration with itself) using the system’s correlations
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FIG. S1. Chargon fluctuations within NLST. (a) Correlations C(i, j), Eq. (S4), for a fixed reference site i = [4, 2] calculated
with DMRG with the same pinning fields as described in the main text. These correlations are the essential ingredient for
calculating the energy of string states on the Bethe lattice, presented for lattice depth d = 3 in (b). The structure follows
the classical picture illustrated in Fig. 2 (a) in the main text. Finite size effects are taken into account by cutting off sites on
the Bethe lattice that do not lie within the finite system’s frame. (c) Density distribution in real space after diagonalizing the
hopping Hamiltonian on the Bethe lattice, Eq. (S5). Though the anisotropic energy distribution on the Bethe lattice leads to
slightly larger hole densities on the diagonals compared to the anti-diagonals, differences are small (see the numerical values).

follow the structure of a classical background as illustrated in Fig. 2 (a) in the main text, whereby string energies
along the diagonal are lower compared to other paths.

The Hamiltonian of the chargon for an initial hole position j° is then expressed within the geometric string basis
on the Bethe lattice,

*tZU a, %) (§° a2|+hc+ZE

(=)

Hcharge(.] Ol |.] «, E> <.] « E| (85)

The Hamiltonian, Eq. (S5), is diagonalized, yielding
Z charge |.] o E> (86)

|\chharge .] O[

as its ground state with eigenenergy E3,,...(3*). Mapping the hole density back to real space, (i]") = > 5 o [V Chargc|2
where Q)j is the set of paths leading from a hole initially at j° to be located at j, results in the density dlstrlbutlon
shown in Fig. S1 (c¢) for j* = [4,2]. Though the anisotropic energy distribution on the Bethe lattice leads to slightly
larger hole densities on the diagonals compared to the anti-diagonals, differences are small [see the numerical values
in Fig. S1 (c)].

Comparing the result to the densities as acquired from DMRG calculations, this suggests that the magnetic polaron
itself (built up from fast chargon fluctuations centered around the fixed spinon) is only slightly influenced by the
anisotropic energies on the Bethe lattice, but instead the motion of the composite chargon-spinon object induces the
observed anisotropy. This is further suggested by DMRG results for varying ¢/.J, where an increase of ¢/.J leads to a
decrease of the density’s spatial anisotropy, as shown in Fig. S2.

Tight-binding description of spinon motion. On top of chargon fluctuations, we consider the leading spinon hopping
terms, i.e., we consider off-diagonal couplings J, (js,jsl; .3 = (jsl , QU Z’|7:L|j5, «, ). In the case of the SU(2) symmet-
ric t-J model, major contributions are given by next-nearest neighbor (NNN) spinon hopping processes isotropically
in all spatial directions. In contrast, in the SU(3) ¢-J model, dominant contributions are restricted to diagonal NNN
spinon hopping processes along the 3-SL order. Fig. S3 (a) illustrates the process: For a given string configuration
li*, @ = R, X)), exchange of two neighboring particles (here given by the green and red flavors at the left edge of the
central leg) leads to a string configuration [j* — e, + e,,a = R, ¥’), with a resulting string length |¥’| = |X| 4+ 2 and

unit vectors e,,e,. More generally, the Hamiltonian couples off-diagonal string states (j*, a, S|H|jE £ d, a, %) with
|¥'| = |X| £2 and d = e, — e, pointing along the diagonal stripe order.

Owing to the finite overlap of string states with different initial hole positions j°, the effective spinon hopping is
given by

DEDDRAGN DS il (S7)
=,

In the classical limit and for large system sizes, J(j*, .]Sl, ¥, %) = J/2 if a single particle exchange relates the two
string states |j*, a, X) and |j*,a,X'). As the exact evaluation of J,(j%,j%,%,%’) is cumbersome, we approximate
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FIG. S2. Varying t/J. (a)-(c) 2D hole density distributions for ¢t/J = 1.0, 1.5, 3.0, respectively, calculated with DMRG for
L, x Ly =9 x 5 systems with OBC. (d)-(f) Hole densities along the z-direction, for each of the five legs. When increasing t/.J
(i.e. increasing the ratio of hole fluctuations compared to magnetic coupling strength), the anisotropy in the density is observed
to monotonously decrease.
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FIG. S3. Spinon tight-binding description. Exchange processes as appearing in the Hamiltonian of the SU(3) t-J model
lead to hopping processes of the spinon, as illustrated in (a). Dominant contributions come from diagonal spinon hopping
events, (b), resulting in a string state |, j® + d) of length |%'| = |3| & 2. The on-site energy Echarge(j°) defines an effective
potential seen by the spinon, (c), here shown for vrc = 0.1.
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J*(j°, jsl) ~ vpcd/2, where we treat the Franck-Condon factor vpe as an effective fit parameter of the geometric
string theory. In the limit of weak coupling, ¢t < J, the Franck-Condon factor approaches vpc = 0. In the strong
coupling regime, ¢t > J, vpc — 0.5 [61].

We model diagonal hopping of the heavy polaron by an effectively 1D tight-binding system, with hopping parameter
J* = vpcJ/2 and on-site energies Echarge( #) calculated via NLST, cf. Eq. (S6), with j° lying on the diagonal D that
includes the central site — illustrated in Fig. S3 (b) and (c). The Hamiltonian is given by

Heopinon =T | D clej+he | 4 Edue()cle, (S8)
(i,j)eD jeED

yielding coefficients 1/: non g spinon positions j°. We note that, as both vgpc and J are positive, the effective spinon
hopping is positive, J* > 0, yielding a dispersion minimum of the spinon at k = 7 reminiscent to 2D quantum
magnets [61, 76]. Finally, we combine charge and spinon parts by a plane-wave ansatz, arriving at

Z wspmonhllcharge J Oé Z wbpmonz charge |J a E> (Sg)
j*eD jseD

|¢§pinon |2 charge |2

The total hole distribution is given by a weighed sum with coefficients of hole distributions | for
each mean chargon position j*. Fig. S4 compares DMRG calculations with NLST including the spinon tight binding
description. Indeed, for a Franck-Condon factor of vpc = 0.1, the hole density is reproduced accurately for ¢/J = 1.5.
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FIG. S4. Comparison of DMRG with NLST. Hole densities for ¢/J = 1.5 on a Ly X L, = 9 x 5 system using DMRG (left
panel), and NLST (right panel) for Bethe lattice depth d = 6 for t/J = 1.5 (a) and Franck-Condon factor vrc = 0.1.
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FIG. S5. Convergence of DMRG dynamics. Mean Manhattan distances along the diagonal and anti-diagonal in a
Ly X Ly =9 x 5 system with ¢t/J = 1.5 as a function of time, for maximum bond dimensions x = 3000, 4000, 5000. While the
mean Manhattan distance converges along the diagonal, slight differences between x = 4000 and y = 5000 are seen along the
anti-diagonal. Nevertheless, the dynamical formation of the sub-dimensional magnetic polaron that leads to the appearance of
the anisotropy at early times is identical for all bond dimensions.

3. Dynamics

We calculate the dynamical properties of a doped hole using MPS time evolution methods. As local methods
suffer from large projection errors at small time steps (where the entanglement in the charge sector is zero), we
use the global expansion method [68], before switching to TDVP [69] once the maximum set bond dimension is
achieved. In particular, we choose a Krylov subspace order of 3, time steps ATJ = 0.02, and bond dimensions
Xmax = 3000,4000,5000. Fig. S5 shows the dynamics presented in Fig. 3 in the main text for the various bond
dimensions. Along the diagonal, the mean Manhattan distance is seen to converge up to times Tt ~ 1.3. Minor
deviations between bond dimensions y = 4000 and x = 5000 are visible starting from times Tt ~ 1.0 along the
anti-diagonal. Nevertheless, the early time dynamics including the dynamical appearance of the anisotropy between
the diagonal and anti-diagonal mean distances is well converged.

The geometric string theory for the chargon dynamics presented in the main text is, in analogy to the ground state
considerations, based on a product state ansatz with effective Hamiltonian

Heff = ﬁcharge + ﬁspinon7 (SIO)

such that dynamical properties are evaluated by calculating exp (_iﬂeﬂ‘T) li*, o, X = 0); here, ”ﬂspinon only acts on

the spinon degree of freedom |[j®), whereas ﬁcharge generates chargon dynamics for a given spinon position. In order
to make predictions for the formation and motion of the magnetic polaron in the thermodynamic limit, we do not
account for finite size effects (as described for the ground state calculations) in the NLST+TB dynamics calculations.

4. Role of boundary conditions in the undoped SU(3) ¢-J model

As mentioned in the main text, we focus on open boundary conditions (OBC) in both directions in our simulations.
Indeed, we find that for the accessible system sizes OBCs are crucial to observe the three sublattice diagonal stripe
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FIG. S6. Periodic boundary conditions. On-site moments (a) and entanglement entropy (b) for a system of size L, x L, =
8 X 6 with periodic boundaries along the y-direction. Both boundaries pin the 3-SL diagonal order, with pinning strength
pp/J = 1. The site index in (b) indicates the border of the subsystem, following the standard snake indexing as illustrated
by dark gray lines in (a). Both entanglement entropy and on-site moments suggest the absence of magnetic order despite the
applied pinning, and instead suggest the appearance of coupled 1D (periodic) chains.

order in the undoped ground state of the SU(3) ¢t-J model, consistent with what was mentioned in Ref. [33]. Fig. S6 (a)
shows the on-site moments of the three flavors for a system of size L, x L, = 8,6 with periodic boundaries (PBC)
applied along the short (y-) direction. Even with the applied pinning (shown in Fig. S6 for p,/J = 1), the order
rapidly disappears away from the boundaries. Moreover, we have carefully checked that full projections of real-space
patterns do further not reveal any ordered state. For the system widths considered here, the entanglement entropy
reveals that the ground state converges to a state of weakly coupled 1D (periodic) chains, as shown in Fig. S6 (b).
We conclude that the appearance of weakly coupled chains in periodic systems is an artifact of finite-size effects, and
that we expect diagonal stripe order to appear when L, > 1 becomes much larger — which is, however, not accessible
with current numerical techniques.



