
Finite-Temperature Quantum Matter with Rydberg or Molecule Synthetic Dimensions

Sohail Dasgupta,1, 2, ∗ Chunhan Feng,3, † Bryce Gadway,4, ‡ Richard T. Scalettar,5, § and Kaden R. A. Hazzard1, 2, 5, ¶

1Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
2Rice Center for Quantum Materials, Rice University, Houston, TX 77005, USA

3Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY 10010, USA
4Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3080, USA

5Department of Physics, University of California, Davis, CA 95616, USA
(Dated: August 1, 2023)

Synthetic dimension platforms offer unique pathways for engineering quantum matter. We com-
pute the phase diagram of a many-body system of ultracold atoms (or polar molecules) with a set
of Rydberg states (or rotational states) as a synthetic dimension, where the particles are arranged
in real space in optical microtrap arrays and interact via dipole-dipole exchange interaction. Us-
ing mean-field theory, we find three ordered phases - two are localized in the synthetic dimension,
predicted as zero-temperature ground states in Refs. [Sci. Rep., 8, 1 (2018) and Phys. Rev. A 99,
013624 (2019)], and a delocalized phase. We characterize them by identifying the spontaneously
broken discrete symmetries of the Hamiltonian. We also compute the phase diagram as a function of
temperature and interaction strength, for both signs of the interaction. For system sizes with more
than six synthetic sites and attractive interactions, we find that the thermal phase transitions can
be first or second order, which leads to a tri-critical point on the phase boundary. By examining the
dependence of the tri-critical point and other special points of the phase boundary on the synthetic
dimension size, we shed light on the physics for thermodynamically large synthetic dimension.

I. INTRODUCTION

Synthetic dimension platforms are more than a power-
ful tool for investigating interesting physics from broad
fields, they are also a pathway for simulating interact-
ing quantum matter that has no analog in other sys-
tems. A synthetic dimension is built using the internal
or motional states of quantum particles such as ultra-
cold atoms, molecules, or photons. When the levels are
coupled with electromagnetic radiation, these platforms
can be used to engineer Hamiltonians that are identical
to a wide variety describing motion in real space. They
are highly tunable, allowing independent control of the
system parameters, including tunneling amplitudes and
phases, and the on-site synthetic potentials.

Since the first proposal [1], several platforms have been
experimentally realized. Examples include synthetic di-
mensions based on nuclear spin states [2–4], momen-
tum states [5–13], optical clock states [14], harmonic
trap states [15, 16], Floquet states [17] and Rydberg
states [18–20] of ultracold atoms; and time and frequency
states of photons [21–25]. There are also proposals to
build synthetic dimensions using rotational states of po-
lar molecules [26]. Observation of topological edge states
[3, 6, 11, 19, 27–34], Anderson localization [7, 12], non-
linear physics [10] and the non-Hermitian skin effect [13],
realization of synthetic gauge fields [2, 3, 35], and hyper-
bolic lattices [36, 37] are some of the highlights. Propos-
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als to engineer topological quantum field theory mod-
els [38] and other topological physics [39] further the ver-
satility of these platforms.

Synthetic dimension platforms have been utilized to
observe not only single-particle phenomena but also
unique interacting physics. Alkaline-earth atoms with
nuclear spin states interact via SU(N) symmetric interac-
tions that are non-local in the synthetic space [3, 40–43],
photonic states interact via synthetic site preserving in-
teractions [23], momentum-space lattices have local (on-
site) attractive interactions [44, 45], and Rydberg atoms
interact via dipolar exchange interactions [20] that are
local (roughly nearest-neighbor) in synthetic space.

In this work, we focus on a model of dipolar interact-
ing quantum many-body systems, first proposed to be
built with rotational states of ultracold polar molecules
trapped in optical microtraps [26]. The same model can
also be realized with Rydberg states of ultracold atoms
[19, 20, 27].

One of the intriguing features of this system is that
for strong interactions compared to the synthetic tunnel-
ing rates, the ground states are localized to finitely many
sites in the synthetic dimension. They resemble thick
strings (membranes) in one (two) dimensional real-space
arrays of molecules or Rydberg atoms fluctuating in a two
(three) dimensional real+synthetic space, hence named
the string/membrane phase. Essential features of these
phases have been studied for some special cases. In Ref.
[46], the wavefunction for the string phase was exactly
solved for one real and one synthetic dimension when
the synthetic tunneling rates vanish. Mean-field theory
[26] and density matrix renormalization group (DMRG)
[46] predict that the string/membrane phase persists to
infinitely large synthetic dimensions for any synthetic
tunnelings for attractive interactions, while for repul-
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sive interactions there is a critical synthetic tunneling at
which the system transitions from a string/membrane to
a disordered phase. Recently, stochastic Green’s function
quantum Monte Carlo studies [47] showed that in two-
dimensional real-space arrays, the membranes survive to
finite-temperatures in systems with a finite number of
synthetic lattice sites, and undergo a thermal phase tran-
sition into the disordered phase as temperature is raised.

However, fundamental questions remain unanswered:
(1) Are these the only phases of this model? (2) Is there a
simple physical understanding of the phases? (3) Do they
persist at finite temperature for repulsive interactions?
(4) How does the size of the synthetic dimension affect
the phases and the critical temperature?

In this paper, we make progress on these questions.
We identify three symmetry-broken phases, accessible to
experiments by tuning a single system parameter. Two
of the phases are localized in the synthetic dimension and
were predicted in Ref. [26] and studied in [46] and [47],
while our calculations reveal an additional ordered delo-
calized phase. Through identifying the symmetry groups
and a mean-field theory, we classify them by the dis-
crete symmetries that they break and show that all of
the non-trivial phases persist to finite temperature. We
characterize the dependence on the synthetic dimension
size of all the phases and the transitions between them.

We also find a tri-critical point on the thermal phase
boundary for attractive interactions when there are more
than six synthetic sites. In this case, the thermal tran-
sition is first order for weak synthetic tunnelings and
second order for strong synthetic tunnelings with a tri-
critical point in between. We discuss the analogy of this
phenomenon with the classical Potts and p-states clock
model later.

The paper is organized as follows: Section II discusses
the platform and the Hamiltonian, Sections III and IV
describe the mean field theory and the resulting phase
diagram, and we conclude in Section V and suggest in-
teresting open questions.

II. RYDBERG ATOM AND MOLECULE
SYNTHETIC DIMENSIONS

We consider a system of ultracold Rydberg atoms
or polar molecules, trapped individually in optical mi-
crotraps or sites of a optical lattice in a one- or two-
dimensional bipartite real-space geometry (Fig. 1).
(Results for attractive interactions apply also to non-
bipartite lattices.) Rydberg levels of atoms or rotational
states of molecule are separated by microwave frequen-
cies, allowing coherent control of several levels. The lat-
tice is sufficiently deep to prevent real space tunneling.
Throughout the rest of the paper, we describe the sys-
tem in terms of Rydberg states of ultracold atoms but
equivalent physics exists in polar molecules as well.

A set of Rydberg states, alternating between s and
p angular momentum levels, is resonantly coupled with

FIG. 1. Two real-space sites of a Rydberg atom (n >> 1)
array with Ns synthetic sites. The synthetic sites are indexed
by ν (1 to Ns). Resonant microwaves couple alternating s
(odd ν) and p (even ν) angular momentum states. Atoms
interact via dipolar exchange. Deep traps prevent real space
tunneling.

microwaves to form a linear synthetic dimension, as de-
picted in Fig. 1. This forms an open boundary condition,
or the last state can be coupled to the first to have a pe-
riodic boundary condition. The power of the microwaves
coupling pairs of synthetic sites sets the corresponding
tunneling amplitude. The detuning of the microwaves
from the resonant frequency sets the on-site potential en-
ergy. In our model, we fix all the synthetic tunnelings to
be equal to each other and all the detunings to be zero,
which is easy to achieve experimentally.
Pairs of Rydberg atoms interact strongly via the

dipole-dipole interaction [48]. In general, interactions de-
pend on the synthetic sites of the two atoms. But our
choice of alternating s and p angular momentum states
implies that the interaction can be non-zero only between
sites of different parity with the pairs of states next to
each other being the strongest. For most scenarios, the
interaction strength between sites separated by three syn-
thetic sites are small and is ignored in our calculations.
The interaction strength does not vary significantly with
the principal quantum numbers n of the Rydberg states
for large n. Hence we approximate to having non-zero in-
teraction strengths only when two atoms are separated by
exactly one synthetic site and assume them to be equal.
The Hamiltonian describing the situation is

H =− J

Ns∑
ν=1

∑
i

|ν, i⟩ ⟨ν − 1, i|+ h.c.

+ V

Ns∑
ν=1

∑
⟨i,j⟩

|ν, i; ν − 1, j⟩ ⟨ν − 1, i; ν, j|+ h.c.,

(1)

where Ns is the total number of synthetic sites, J is the
tunneling amplitude between a pair of synthetic sites,
which we assume throughout to be positive, V is the
interaction energy between two atoms, and |ν, i⟩ repre-
sents an atom at real (synthetic) site i (ν) with ν = 0
and ν = Ns identified to induce periodic boundary condi-
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tion. We have assumed the quantization axis is perpen-
dicular to the array (or otherwise oriented so that the
dipolar interaction is isotropic), and have truncated the
1/r3 interaction to nearest neighbors. In 1D we expect
this truncation to have only relatively small effects on
the phase diagram, and this is likely also true in 2D. In
3D the 1/r3 interaction and anisotropy are likely to play
major roles, a question we leave to future work. Some
further discussion on these points can be found in the
conclusions.

Considering an infinitely large lattice in real space and
periodic boundary condition in the synthetic dimension,
the Hamiltonian of Eq. 1 has a D2Ns × T symmetry;
D2Ns is the symmetry group of a regular polygon of Ns

sides and T is the discrete symmetry group of the real
space lattice.

III. MEAN FIELD THEORY

To calculate the phase diagram of the Hamiltonian in
Eq. 1, we employ a mean-field approximation to decouple
the interaction terms, giving

H =

Ns∑
ν=1

∑
s=±1

(
−J
2
+ Ṽ ϕ∗ν,s̄

)
|ν, s⟩ ⟨ν − 1, s|+ h.c. (2)

where s = ±1 label the two sublattices of the bipartite
lattice, s̄ = −s, Ṽ = V z

2 with z being the number of
nearest neighbor atoms, and

ϕν,s =
〈
|ν, s⟩ ⟨ν − 1, s|

〉
(3)

are the mean-fields. As mentioned above, periodic
boundary condition is imposed by identifying ν = 0 and
ν = Ns. We allow the mean-fields to differ on the two
different sublattices in the real dimension. This will be
necessary to describe the phases for V > 0. Expand-
ing the expectation value on the right hand side of Eq.
3, we see that the mean-fields satisfy the self-consistent
equation

ϕν,s =
1

Z
∑
α

⟨α |ν, s⟩ ⟨ν − 1, s|α⟩ e−Eα/T , (4)

where Z =
∑

α e
−Eα/T is the mean-field partition func-

tion, and |α⟩ and Eα are the αth eigenstate and eigenen-
ergy of the mean-field Hamiltonian in Eq. 2, respectively.
Note that |α⟩ and Eα are functions of the mean-fields,
{ϕν,s}ν=1,··· ,Ns;s=±1. We have set the Boltzmann con-
stant, kB = 1.
The mean-field approximation identifies all real lattice

points in a sublattice, thus reducing the symmetry group
T to Z2. Therefore, the mean-field Hamiltonian (Eq. 2)
has D2Ns

× Z2 symmetry when all the mean-fields are
equal, which corresponds to the disordered phase.

We iteratively solve for the mean-fields using Eq. 4.
We start with a random initial seed for each mean field

in (−1, 1). The results are considered converged when
|ϕkν,s−ϕk−1

ν,s | < 10−6 ∀ν, s; k labels the iteration step. We
estimate a relative error of less than 2%, where the rel-

ative error is defined as |(ϕkmax
ν,s − ϕ

kmax/2
ν,s )/ϕkmax

ν,s |, where
kmax is the number of iterations needed for the mean-
fields to be considered converged.

IV. PHASE DIAGRAM

Mean-field theory predicts a phase diagram with four
phases (Fig. 2). They are characterized by the subgroups
of D2Ns

×Z2, the symmetries of the Hamiltonian in Eq. 2.
The Localized I phase (green) breaks the D2Ns

symme-
try but retains the Z2 symmetry, while the Localized
II (blue) phase breaks both. The Delocalized II (red)
phase preserves only the symmetry of simultaneous rota-
tion by half the synthetic dimension size and real-space
exchange. The Delocalized I (white) phase is the trivial
or disordered phase where all the mean-fields are equal
and the system has the full D2Ns × Z2 symmetry. Call-
outs (iv)-(vii) of Fig. 2 depict the ground state wave-
functions in different phases, corresponding to the white
semi-circles in the main figure.
The phases are diagnosed with three order parameters,

φrot
s =

∣∣∣∣∣
Ns∑
ν=1

ϕν,se
−ι2πν/Ns

∣∣∣∣∣ (5)

φZ2 =

Ns∑
ν=1

|ϕν,1 − ϕν,−1|2 (6)

φrNs/2×Z2 =

Ns∑
ν=1

∣∣ϕ(ν+Ns/2),1 − ϕν,−1

∣∣2 (7)

for even Ns. Each vanishes if and only if the correspond-
ing symmetry is preserved. φrot

s distinguishes phases with
from those without all the rotation symmetries of the di-
hedral group, D2Ns

. The value of s is irrelevant for the
phases in the mean-field theory. From Fig. 2.3, it is evi-
dent φrot separates the trivial phase, Delocalized I, from
the rest of the phases. φZ2 distinguishes phases with
sublattice exchange symmetry. The sublattice exchange
symmetry, characterized by φZ2 , is never broken for at-
tractive interactions as seen in Fig. 2.2 but is broken in
all the non-trivial phases for repulsive interactions. For
even Ns, the Delocalized II phase (red region Fig. 2) is
the only non-trivial phase preserving the rNs/2×Z2 sym-
metry. For odd Ns, rotation by Ns/2 is not well-defined.
Instead if we perform rotation by (Ns ± 1)/2 sites, then
r(Ns±1)/2×Z2 is “almost” a symmetry. The order param-
eter in Delocalized II phase is small (< 0.1) compared to
Localized I/II phases (0.3− 1) but not exactly zero. The
phase diagram of Fig. 2 is sketched by adding the three
different colors (in an RGB sense) of Fig. 2.1 - 2.3 at
individual points.

In addition to their symmetry-breaking features, an in-
triguing feature of the Localized I and II phases is that
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FIG. 2. Phase diagram for Ns = 12 in the T/ ˜|V | − J/Ṽ plane. The green, blue, and red regions correspond to “Localized I”,
“Localized II” and “Delocalized II” phases respectively and the white area corresponds to the disordered phase, “Delocalized
I”. On the right, panels 1, 2, and 3 show the density plots of the three order parameters, φrNs/2×Z2 , φZ2 , and φrot. The x and
y axes in the panels 1, 2, and 3 are identical to the main figure. The phase diagram is obtained by superposing the three order
parameters, colored as in panels 1, 2, and 3, so that each phase is uniquely identified. The black solid (dashed) line demarcates
the phase boundaries corresponding to first (second) order transitions between the ordered and the disordered phases. The
black circle (magenta square) on the phase boundary denotes the tri-critical point (meeting point of Localized II, Delocalized
II, and Localized I phases). Insets (i) and (ii): The average of the three order parameters, φav = 1

3
(φrNs/2×Z2 + φZ2 + φrot)

versus T/|Ṽ |; blue squares (red dots) correspond to the blue dotted (red solid) vertical cut. (iii) The average of the order

parameters is plotted versus J/Ṽ for the dark blue dash-dot horizontal cut. Callouts (iv)-(vii): The ground state wavefunction

of the mean-field Hamiltonian at T = 0 corresponding to J/Ṽ at the white semi-circles. The y-axis corresponds to the Ns

discrete synthetic sites, labelled by n. The columns correspond to the two sublattices, s = ±1. Both the color intensity and
marker size vary proportionally with the absolute value of the wavefunction.

they are localized along finitely many synthetic sites (i. e.,
the probability decays exponentially outside of a finite
number of synthetic sites) as seen for the ground states
shown in the callouts (v) and (vi) of Fig. 2. The existence
of two localized ground states was already predicted in
Ref. [26] using mean-field theory. For J = 0, Ref. [46] an-
alytically proved that one-dimensional real-space arrays
have ground states confined to two or three adjacent syn-
thetic sites. Similar behavior is observed in our J = 0
mean-field theory: width-2 and width-3 states are de-
generate, and lower in energy than the disordered phase
when Ns > 4, as shown in Appendix A.

The Delocalized II phase, not reported in Refs. [26, 46],
is spread over a large fraction of the synthetic dimension,
but the atoms are spread over opposite sets of synthetic
sites on each sublattice. The system however remains
invariant under simultaneous rotation by half of the syn-
thetic sites and real space sublattice exchange for even

number of synthetic sites.

All three non-trivial phases extend to non-zero tem-
peratures for finite Ns ≥ 5. However, the transition
temperatures tend to zero as Ns → ∞. A Peierls-like
argument comparing the free energies, ∆F = Fordered −
FDelocalized I, of the ordered phases and the Delocalized
I phase suggests this, and it is consistent with our anal-
ysis of the critical temperatures’ dependence on Ns. We
plot the highest critical temperature in each of the three
ordered phases as a function of Ns in Fig. 3(a).

The orders of the thermal phase transitions depend on
Ns and the ratio J/Ṽ . The phase boundary between the
Localized I and Delocalized I phases hosts a tri-critical
point for Ns > 6. We observe that the phase transi-
tion changes from being first-order at small J/|Ṽ | to be-

ing second-order at large J/|Ṽ | with a tri-critical point

in between (black circle in Fig. 2). The value of T/|Ṽ |
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FIG. 3. Trends of the phase diagram with Ns. (a) Scaling of
the highest critical temperature in each of the three phases
with Ns. It appears that all three of the Tmax

c scale to 0 with
Ns although at different rates.(b) Scaling of the tri-critical
point with Ns. The plot suggests that the tri-critical point
scales to JNs=∞, TNs=∞ = −∞, 0. This is even more promi-
nent in the inset, where the x-axis is inverted to Ṽ /J . (c)
Scaling of the meeting of the Localized II, Delocalized I and
Delocalized II phases with Ns. The plot suggests that it scales
to zero temperature but a finite tunneling as Ns → ∞.

(J/|Ṽ |) at the tri-critical point decreases (increases) with
Ns [Fig. 3(b)]. The inset in Fig. 3(b) strongly suggests
that in the limit Ns → ∞, the tri-critical point is at
T/|Ṽ | = 0, J/Ṽ = −∞. This is consistent with the ar-
guments of Ref. [26] that the V < 0 ground state for
Ns → ∞ is always a string.
We understand the qualitative behavior of the tri-

critical point in two ways: an analytic argument for J = 0
and analogies to previously studied classical models. In
App. A, we analytically show that the thermal phase
transition is first (second) order at J = 0 for Ns > 6
(Ns ≤ 6). Furthermore, we note that the Ns-dependence
of the order of the phase transition resembles that of the
classical Potts model [49], if the synthetic sites are con-
sidered as spin indices of a large spin [S = (Ns−1)/2] sys-
tem. For example, for the two-dimensional Potts model,
the thermal phase transition is second (first) order when
Ns ≤ 4 (Ns > 4). For another large-spin model, the clock
model, the analogy is less direct: the system undergoes a
second order thermal phase transition when Ns ≤ 4, and
has a Berezenskii-Kosterlitz-Thouless (BKT) phase in-
termediate to ordered and disordered phases for Ns > 4.
In making the analogy to classical models, it’s worth

noting that the synthetic dimension Hamiltonian Eq. 1
has qualitative differences with both Potts and clock

models. The Potts model has a different symmetry – a
full spin-permutation symmetry, whereas the clock model
has the same D2Ns

symmetry but has nonlocal interac-
tions between all synthetic sites.
A model that captures both the symmetry and the

locality of the interactions in synthetic space was in-
troduced and studied in Ref. [50]. It includes same-
synthetic site (J0) and nearest-synthetic-site (J1) inter-
actions. When J1 ≫ J0, the näıve case corresponding
to the quantum model, a direct phase transition from a
narrow sheet (dubbed “ferromagnetic” there) to the dis-
ordered phase is found. For large Ns this is clearly first
order, while for smaller Ns, the order is less clear – it
is either a less drastic first order or second order tran-
sition (e.g. Fig. 3 of Ref. [50]). This classical analogy
also suggests other interesting phenomena. For example,
when J1 is sufficiently bigger than J0 the transition be-
comes second order and may involve a second crossover or
Berezinskii-Kosterlitz-Thouless transition, an interesting
possibility in the quantum model.
The Ns-dependence of the meeting point of the Lo-

calized II, Delocalized II, and Delocalized I phases for
repulsive interactions shows that the Localized II phase
extends only to finite J/Ṽ even as Ns → ∞, in contrast
with the Localized I phase [Fig. 3(c)]. From Fig. 3(c), it

seems that the T/Ṽ goes to zero, but J/Ṽ tends to a fi-
nite value as Ns → ∞. This qualitatively agrees with the
findings of Ref. [26] that for Ns → ∞ and repulsive in-
teractions, the system undergoes a quantum phase tran-
sition. Our phase boundary for attractive interactions
is also qualitatively consistent with that computed with
stochastic Green’s function (SGF) quantum Monte Carlo
(QMC) [47]. The SGF-QMC method is sign-problem free
for attractive interactions (only) and thus can calculate
observables to high precision. Fig. 9 of Ref. [47] shows the
phase diagram forNs = 10 for a 2D square lattice, finding
a finite-temperature phase transition between the quan-
tum membrane (Localized I) and disordered (Delocalized
I) phases, as we predict from mean-field theory. The
SGF-QMC transition temperature is similar to, though
shifted from the mean-field predictions, and the trends
with Ns and J/Ṽ are similar. For example, both the
QMC and the mean-field theory predict that the system
undergoes a T = 0 quantum phase transition at finite
J/Ṽ ; for Ns = 10, QMC finds this transition to be at

J/Ṽ ≈ −1.2, whereas our mean-field results determine it

at J/Ṽ ≈ −1.7. Mean-field theory predicting the quan-

tum critical point at a larger J/Ṽ is unsurprising, since
it ignores all fluctuations. In addition, QMC observes
only second-order phase transitions for Ns = 10. This
could either be because the tri-critical point for Ns = 10
is very weakly first order, because it occurs at a much
lower value of J/Ṽ than shown in the QMC studies, or

it could be that the transitions at all J/Ṽ for Ns = 10
are second order. In the latter case, it is possible that
the critical Ns above which the tri-critical point first ap-
pears has been shifted from the Ns = 6 value predicted
by mean-field theory to Ns > 10. We believe this is likely,
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as the QMC results for Ns = 14 and V = −5J (Fig. 7 of
Ref. [47]) show a step feature suggestive of a first-order
transition.

V. CONCLUSION AND OUTLOOK

We calculated the phase diagram of a dipolar interact-
ing quantum system with real and synthetic dimensions,
and analyzed the features of the phase diagram as a func-
tion of interaction, temperature, synthetic tunnelings,
and synthetic dimension size. This model can be engi-
neered with ultracold Rydberg atoms or polar molecules
arranged in optical microtraps or optical lattices and ex-
ternal microwave couplings, with a recent first study of its
dynamics in Ref. [20]. Tuning a single parameter, J/Ṽ ,
realizes a rich phase diagram with four distinct phases,
and both thermal and quantum phase transitions, which
may be either first or second order.

Using mean field theory and analyzing the results
according to order parameters constructed based on
the symmetry group, we classify the string/membrane
phases, predicted in Refs. [26, 46]. Both these phases
spontaneously break the D2Ns

symmetry of the model,
with some remnant symmetries depending on the sign of
V and whether Ns is even or odd. For V > 0, this phase
breaks the real-space sublattice-exchange Z2 symmetry.
In addition, we predict the existence of another

symmetry-broken phase that is not string/membrane-
like. This phase occurs for V > 0 over an intermediate
range of J/Ṽ , and it enjoys a remnant symmetry under
a simultaneous rotation by half the synthetic sites and
sublattice exchange (for even Ns). Moreover, the system
is delocalized over a finite fraction of the synthetic space.
It is an open question to what extent the localization
plays a role beyond symmetry-breaking– are the univer-
sal properties of the low-energy excitations of the ordered
phases solely determined by the symmetry, or does the
stringiness also play some additional role?

We observe the presence of both first- and second-order
transitions with a tri-critical point in between for Ns > 6
and V < 0. The thermal phase transitions are second
order for Ns ≤ 6. The dependence of the order of the
transition on Ns resembles Potts model physics.
The scaling of the phase boundaries with Ns is con-

sistent with earlier T = 0 mean-field calculations and
the special cases that have been treated numerically.
We show that the tri-critical point scales to (J/Ṽ →
−∞, T → 0) as Ns → ∞; hence the Localized I phase

persists to arbitrarily large |J/Ṽ | at T = 0 for Ns → ∞.
Similarly, we show the meeting point of the Localized
II, Delocalized II and Delocalized I phases scale to a fi-
nite J/Ṽ and zero T with Ns → ∞. These results are
qualitatively consistent with previous predictions [26, 46]
that the string phase for V > 0 (V < 0) persists to finite

(arbitrarily large) J/Ṽ .
The physical realization of the different phases and

observation of the phase transitions appears within the

reach of current experiments, for example using the Ry-
dberg tweezer platform of Ref. [20]. Usually, in exper-
iments it is convenient to start with a product state,
e.g., |ψ⟩ = |1111 · · ·⟩. The T = 0 ground state for

different J/Ṽ values can be adiabatically prepared by
slow variations of the microwave parameters (detunings
and amplitudes). Importantly, to capture features of
the (De)Localized II phases one also needs to break the
spatial translation and reflection symmetry during state
preparation, as has been demonstrated in Ref. [51] for
a special Ns = 2 case. Following adiabatic preparation,
the properties of the ground state can then be explored
to identify the different phases discussed. For example,
measurements of the counting statistics– measuring the
number of Rydberg atoms in a chosen level in a given
shot, and then taking a histogram of this quantity– can
provide a means to distinguish between the Localized and
the Delocalized phases. Delocalized phases would have
broad, roughly Poissonnian, fluctuations around a mean
value, whereas localized phases would have a bimodal
character: a peak with O(1/Ns) probability of seeing
around O(Ns) Rydberg atoms in a given level, and an
O(1) peak around having no particles in the level. Al-
ternatively, by attempting to ramp from and then back
to the state |1111 · · ·⟩, one can identify accessible phase
transitions by finding breakdowns in adiabaticity at par-
ticular J/Ṽ values.

Effects of long-ranged interactions and interactions
that vary with synthetic site on the phases are left for
future investigations. For the dipolar real-space interac-
tions, states that preserve sublattice symmetry will re-
main mean-field eigenstates with the same eigenenergy,
where their only consequence is to change the effective z
factor in Ṽ . For states breaking the sublattice symme-
try, the intra-sublattice (“A-A”) versus inter-sublattice
(“A-B”) interactions will couple to different mean fields.
Although a weak dependence of the interactions on the
synthetic site index itself should not drastically change
the phase diagram (Localized-Delocalized phase transi-
tions change to sharp cross-overs), having interactions
non-local in the synthetic space could have non-trivial
effects.

In the future, we expect the dipolar synthetic dimen-
sion platform to be a powerful tool for studying the inter-
play of interactions, topology and synthetic gauge fields.
Incorporating different synthetic tunneling schemes or
geometries along the synthetic dimension is experimen-
tally feasible, so the already rich physics observed here
is likely to be the tip of an iceberg. Different tunnel-
ing schemes can be implemented by simply adjusting
the power of the microwaves similar to the schemes in
Ref. [52]. The Su-Schreiffer-Heeger (SSH) model, which
hosts topological edge states, has been already realized
in a single Rydberg atom [19] and systems with gauge
fields have been realized in the platform of Rydberg atom
tweezer arrays [20].
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Numerically solving the mean-field equations, we find two
solutions, a disordered phase in which all mean-fields are
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We can predict the critical temperature and the order
of the phase transition of the system at J = 0 by consid-
ering the self-consistency equation for the mean-fields,

ϕ̃s =
1

2

(
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fields, which we have labeled as 1 and 2. For small ϕ̃s,

ϕ̃s =

(
Ṽ

NsT

)2

ϕ̃s

+ (Ns − 6)Ṽ 4 ((NsT )
2 + Ṽ 2)

6N5
s T

6
ϕ̃3s +O(ϕ̃5s)

(A3)

A phase transition occurs when the coefficient of the lin-

ear term, 1− ( Ṽ
NsT

)2, vanishes and the order of the phase

transition is determined by the sign of the ϕ̃3s term. This

is equivalent to the standard Landau theory analysis of
phase transitions with a U(1) symmetry associated with

the phase of ϕ̃s, with the coefficients determined using
the mean-field theory. Thus, the critical temperature
is Tc = Ṽ /Ns when the transition is second-order. In

Eq. A3, the coefficient of the ϕ̃3s term on the rhs is pos-
itive for Ns > 6 and thus has a first-order transition,
and negative for Ns < 6 and thus has a second-order
transition.
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