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It has been proved that in gapped ground states of locally-interacting quantum systems, the
effect of local perturbations decays exponentially with distance. However, in systems with power-
law (1/rα) decaying interactions, no analogous statement has been shown, and there are serious
mathematical obstacles to proving it with existing methods. In this paper we prove that when α
exceeds the spatial dimension D, the effect of local perturbations on local properties a distance r
away is upper bounded by a power law 1/rα1 in gapped ground states, provided that the perturba-
tions do not close the spectral gap. The power-law exponent α1 is tight if α > 2D and interactions
are two-body, where we have α1 = α. The proof is enabled by a method that avoids the use of
quasiadiabatic continuation and incorporates techniques of complex analysis. This method also
improves bounds on ground state correlation decay, even in short-range interacting systems. Our
work generalizes the fundamental notion that local perturbations have local effects to power-law
interacting systems, with broad implications for numerical simulations and experiments.

I. INTRODUCTION AND OVERVIEW OF
RESULTS

Locality is a fundamental principle that underlies
many theories of nature. Loosely speaking, locality
means that an object is influenced directly only by its
immediate surroundings, and in particular, should be in-
sensitive to actions taken far away. The precise quan-
titative statement of this principle takes different forms
in different contexts. In quantum many-body dynamics,
locality manifests itself in the form of a causality light-
cone: roughly, if a local perturbation takes place at time
t = 0, then at time t its effect must be within a ball re-
gion r ≤ vt, where r is the distance and v is the maximal
allowed speed of propagation of any physical particles or
signals in the system. In relativistic quantum field theo-
ries, such a causality lightcone is guaranteed by Lorentz
invariance, where v is the speed of light, and effects ex-
actly vanish outside the lightcone. In non-relativistic
quantum many-body systems with short-range interac-
tions, the Lieb-Robinson bound (LRB) [1] guarantees an
effective causality lightcone: the effect of local perturba-
tions decays exponentially in (r− vt), where the speed v
depends on the microscopic details of the system [2–4].

Consequences of locality take a slightly different form
for equilibrium properties of the quantum many-body
system. An important case is on the effect of a local
perturbation on ground states. Specifically, let Ĥ be the
Hamiltonian and consider the effect of a local perturba-
tion V̂Y (supported on region Y ) on a local observable

ŜX , supported on a region X far from Y . Intuitively,
we expect that the expectation value of 〈ŜX〉 measured
in the perturbed ground state should not deviate signifi-
cantly from its unperturbed value when the distance dXY
is large, i.e. the deviation

δ〈ŜX〉V̂Y ≡ 〈ŜX〉Ĥ+V̂Y
− 〈ŜX〉Ĥ (1)

should be small in magnitude. The rigorous proof of

this was pioneered by Hastings [5–7], who showed that
for gapped ground states of a locally interacting Hamil-
tonian, |δ〈ŜX〉V̂Y | is upper bounded by a subexponential
function in dXY , provided that the perturbation does not
close the spectral gap. The proof was based on the idea
of quasiadiabatic continuation (QAC) [5–7], which relates
the perturbed ground state |G〉Ĥ+V̂Y

to the unperturbed
one by a quasilocal unitary evolution

|G〉Ĥ+V̂Y
= T ei

∫ 1
0
Heff (t)dt|G〉Ĥ , (2)

where the effective Hamiltonian Heff(t) has subexpon-
ntial decaying interactions (T is the time-ordering oper-
ation). This immediately transforms the problem back to
the dynamical case, where a generalized Lieb-Robinson
bound implies that |δ〈ŜX〉V̂Y | decays subexponentially
in dXY . This bound is referred to as the LPPL prin-
ciple (local perturbations perturb locally) [8] and has

been strengthened to an exponential decay |δ〈ŜX〉V̂Y | ≤
Ce−µ1dXY [9][51], where C is a constant and µ1 is given
in Tab. I.

In recent years, there has been increasing interest
in understanding the analogous consequences of local-
ity from long-range, power-law (1/rα) decaying interac-
tions, driven in part by the ubiquity of these interac-
tions in many cold atom and molecule [10–14], Rydberg
atom [15–21], and trapped ion [22–26] experiments, typi-
cally with 0 ≤ α ≤ 6, as well as the Coulomb interaction.
The important question then arises: when long-range in-
teractions are present, to what extent can we still expect
locality in the senses described above to hold? The an-
swer to this question is far from obvious, since long-range
interactions can give rise to non-local behaviors of corre-
lation functions for sufficiently small α [27, 28]. For the
dynamical part, LRB has been successfully generalized to
power-law interacting systems [29–34], implying general-
ized causality lightcones (r ∝ evt for D < α < 2D [2],
r = vtβ for 2D < α < 2D + 1 [29], and r = vt for
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α > 2D + 1 [31, 32]).
However, the implications of locality for equilibrium

systems are far less understood when power-law interac-
tions are present, even in the important case of gapped
ground states. This is partly due to the difficulties in gen-
eralizing Hastings’ QAC to the power-law case: QAC has
only been formulated for α > 2D + 2 [35], an extremely
restrictive condition and one rarely satisfied in the ex-
perimental systems of interest. Furthermore, even for
α > 2D + 2, the LPPL principle has never been proved,
and it is expected that the above method with the QAC
in Ref. [35] would lead to power law exponents in the
resulting bounds that are not tight.

In this paper, we prove the LPPL principle for gapped
ground states of lattice quantum systems where interac-
tions are bounded by a power law 1/rα in distance r,
with α > D. To achieve this goal, we devise an alterna-
tive method that avoids the use of QAC Eq. (2) (thereby
circumventing the aforementioned difficulty) and incor-
porates techniques of complex analysis. This method
also improves the LPPL bounds for short-range inter-
acting systems, and applies to degenerate (either exact
or approximate) ground states as well. Our main result

is roughly as follows: for perturbations V̂Y that do not
close the spectral gap,

|δ〈ŜX〉V̂Y | ≤

{
P(ln dXY )/dα1

XY

P(dXY )e−µ1dXY ,
(3)

where 〈. . .〉 is a uniform average over the (possibly degen-
erate) ground state subspace, the first line is for power-
law systems and the second line is for short-range inter-
acting systems, the exponents α1, µ1 are given in Tab. I,
and throughout this paper we use P(x) to denote a poly-
nomial in x with non-negative coefficients [but P(x) in
different equations or in different parts of the same equa-
tion need not be the same]. We see that α1 is equal to α if
α > 2D and interactions are two-body, in which case our
bound is qualitatively tight [up to the subleading prefac-
tor P(ln dXY )] since it agrees with perturbation theory.

As one notable byproduct, the method we use to obtain
these bounds also improves bounds on correlation de-
cay [2, 36] of gapped (possibly degenerate) ground states:

for arbitrary local operators ÂX , B̂Y , their connected cor-
relation function is bounded by

|〈ÂXB̂Y 〉 − 〈ÂX〉〈B̂Y 〉| ≤

{
P(ln dXY )/dα2

XY

P(dXY )e−µ2dXY ,
(4)

where the exponents α2, µ2 are given in Tab. I. We see
that our method improves earlier exponents, even in the
case of short-range interacting systems, where our bound
improves Ref. [2]’s bound by approximately a factor of 2
for ∆� v.

Our results have profound implications on numerical
simulations and experiments. For example, it has been
pointed out [37] that the LPPL principle straightfor-
wardly implies an upper bound on the finite size error of
several numerical ground state algorithms, such as exact
diagonalization [38, 39] and the density matrix renormal-
ization group [40, 41]. Our results Eq. (3) imply that the

finite size error of a local observable Ŝ in gapped ground
state simulations decays in the linear dimension of the
system L as

δ〈Ŝ〉L ≡ |〈Ŝ〉L − 〈Ŝ〉∞| ≤

{
P(lnL)/Lα3

P(L)e−µ3L,
(5)

provided that the finite system is connected to the ther-
modynamic limit by a uniformly gapped path [37]. As
in Eqs. (3,4) the first line is for power-law systems while
the second line is for short-range interacting systems, and
the constants α3, µ3 are given in Tab. I.

Our paper is organized as follows. Tab. I summa-
rizes the exponents α1, α2, α3, µ1, µ2, µ3 in Eqs. (3,4,5)
for various interaction ranges. In Sec. II we introduce
our improved method, and use this method to bound the
response of local observables in gapped non-degenerate
ground states, and obtain the main result, Eq. (3). In
Sec. III we generalize the bounds to gapped degenerate
ground states. In Sec. IV we discuss the implications of
our bounds in finite size numerical simulations and prove
Eq. (5). In Sec. V we use our improved method to obtain
tighter bounds on ground state correlation decay, Eq. (4).
We conclude in Sec. VI.

II. LOCALITY OF PERTURBATIONS TO
GAPPED NON-DEGENERATE GROUND

STATES

Our set-up is as follows. Let ΛL be an infinite sequence
of D-dimensional finite lattices, labeled by the linear sys-
tem size L ∈ Z, with N ∝ LD number of lattice sites in
total. On each site i ∈ ΛL sits a quantum degree of
freedom [can be fermionic, bosonic, or a quantum spin

system] with local Hilbert space Hi. The Hamiltonian
HL acts on the global Hilbert space HL ≡

⊗
i∈ΛL

Hi,
and can be written in the generic form

HL =
∑
X⊂ΛL

hX , (6)

where the summation is over all subsets of ΛL and hX
is the local Hamiltonian supported on X [52] (we will
later specify some locality condition on hX which requires
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Interaction
Prior bound Our bound (LPPL and correlation decay FSE bound

LPPL Correlation decay have same exponents: α1 = α2, µ1 = µ2)

1/rα,

α > D
- α2 = α

1+2v/∆
[2] α1 = 2α

π
arcsin(tanh ∆π

2v
)

if α > D + 1:

α3 = min(α−D,α1 + 1−D)

if D < α ≤ D + 1:

α3 =

{
α−D if α1 > D

α1 + α− 2D if α1 ≤ D

1/rα, α > 2D

two body
- α2 = α [33] α1 = α α3 = α−D

e−µr µ1 = µ
1+2µv/∆

[9] µ2 = µ
1+2µv/∆

[2] µ1 = 2µ
π

arcsin(tanh ∆π
2µv

) µ3 = µ1

TABLE I: Summary of the constants α1, µ1 (LPPL bounds), α2, µ2 (correlation decay bounds), and α3, µ3 (finite size error
bounds) for previous results compared with ours, for both power-law and short-range interacting systems. Our main result
is the proof of the LPPL principle Eq. (3) for ground states of power-law interacting systems with spectral gap ∆, but we
also significantly improved the bound for systems with exponentially-decaying interactions, as well as the constants α2, µ2 that
appears in the correlation decay bounds Eq. (4). The FSE bound Eq. (5) with exponents α3, µ3 is a primary application of
our main result [previously, there is only a FSE bound for short-range systems [37], in which µ3 = µ1 = µ/(1 + 2µv/∆)]. v
is a constant that appears in the LRB that can be straightforwardly calculated (for short-range interacting systems, v is the
Lieb-Robinson speed).

‖hX‖ to be small for large X). Throughout this section
we assume that HL has a non-degenerate ground state
|GL〉 with spectral gap ∆L (the energy difference between
the first excited state and the ground state) that is uni-
formly bounded from below, i.e. there exists ∆(0) > 0
such that ∆L ≥ ∆(0) for all ΛL. At this point we do not
make assumptions on the range of interaction, nor do we
assume that the local Hilbert space is finite dimensional.

Let VY be a local perturbation supported on region
Y . Suppose that for all λ ∈ [0, 1], HL(λ) ≡ HL + λVY
has a non-degenerate ground state |GL(λ)〉 with spec-
tral gap ∆L(λ) that is uniformly bounded from below,
i.e. ∃∆ > 0 such that ∀λ ∈ [0, 1], ∆L(λ) ≥ ∆ > 0, for all
ΛL. This condition will always be satisfied for sufficiently
small perturbations satisfying ||VY || < ∆(0)/2 (|| · · · || is
the operator norm), since Weyl’s inequality [42] gives
∆L(λ) ≥ ∆L − 2λ||VY || ≥ ∆(0) − 2||VY ||.

Let SX be a local observable supported on region
X such that X ∩ Y = ∅. Our goal is to bound the
response of SX to the local perturbation VY , as de-
fined in Eq. (1). We achieve this goal in two steps:
in Sec. II A we present a general method to bound
δ〈ŜX〉V̂Y using a Lieb-Robinson-type bound on the un-

equal time correlator 〈GL(λ)|[SX(t), VY ]|GL(λ)〉, where
SX(t) = eiHLtSXe

−iHLt, and then in Secs. II C-II D we
specialize to systems with different interaction ranges and
apply the corresponding Lieb-Robinson bounds to obtain
our main results in Eq. (3) and Tab. I. The resulting
bounds are independent of the system size L, so they
hold in the thermodynamic limit L→∞.

A. The improved method

In the following we present an improved method to
bound δ〈ŜX〉V̂Y using a Lieb-Robinson-type bound on

〈GL(λ)|[SX(t), VY ]|GL(λ)〉. There are two main im-
provements compared to previous approaches: the first
part generalizes the method in Ref. [37], which avoids

the QAC and directly relates δ〈ŜX〉V̂Y to a specially con-
structed correlation function, while the second part ob-
tains a bound on this correlation function from a LRB on
|〈GL(λ)|[SX(t), VY ]|GL(λ)〉| using complex analysis tech-
niques, which significantly improves the previous method
in Ref. [37].

Since we have a gapped path for λ ∈ [0, 1], we can
use perturbation theory to relate the rate of change of
〈ŜX〉L,λ ≡ 〈GL(λ)|ŜX |GL(λ)〉 at each λ to a special cor-
relation function, from which we will obtain an exact ex-
pression for δ〈ŜX〉V̂Y as an integral over the correlation

function. Choose the normalization and phase of |GL(λ)〉
such that 〈GL(λ)|GL(λ)〉 = 1 and 〈GL(λ)| ddλ |GL(λ)〉 =
0,∀λ ∈ [0, 1]. For any finite L, first order non-degenerate
perturbation theory gives the exact identity

d

dλ
|GL(λ)〉 =

P̄GL(λ)

ĤL(λ)− EL(λ)
VY |GL(λ)〉, (7)

where EL(λ) is the ground state energy of ĤL(λ) and

P̄GL(λ) ≡ 1̂− |GL(λ)〉〈GL(λ)| is the projection operator
to the space of excited states. Then

d

dλ
〈ŜX〉L,λ = 〈GL(λ)|ŜX

P̄GL(λ)

∆̂L(λ)
V̂Y |GL(λ)〉+ c.c., (8)

where ∆̂L(λ) ≡ ĤL(λ)−EL(λ), whose spectrum is lower
bounded by ∆. In the following we prove a uniform
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FIG. 1: For any finite system size L, K∆ (dashed region
on the real axis of the right panel) contains all possible pole
positions of ΩXY (ω), so ΩXY (ω) is complex analytic in the
region C\K∆, as guaranteed by Eq. (9). The conformal map-
ping ω = gv(z) [Eq. (18)] maps the unit disk (left) to the
shaded region of the infinite strip with the pole regions ex-
cluded (right).

bound (independent of L, λ) on the RHS of Eq. (8),

so that a bound on δ〈ŜX〉V̂Y immediately follows from

|δ〈ŜX〉V̂Y | ≤
∫ 1

0
dλ|d〈ŜX〉L,λ/dλ|.

From now on we omit the labels L, λ. We define

ΩXY (ω) ≡
∫ ηω∞

0

〈G|[ŜX(t), V̂Y ]|G〉eiωtdt (9)

= 〈G|ŜX
iP̄G

ω − ∆̂
V̂Y |G〉 − 〈G|V̂Y

iP̄G

ω + ∆̂
ŜX |G〉,

where ηω = sgn[Im(ω)]. Notice that the RHS of Eq. (8)
is exactly iΩXY (0). Taking the absolute value of the first
line of Eq. (9) and using triangle inequality, we have

|ΩXY (ω)| ≤
∫ ∞

0

|〈G|[ŜX(t), V̂Y ]|G〉|e−|Im(ω)|tdt

≤
∫ ∞

0

C(dXY , t)e
−|Im(ω)|tdt

≡ Ω̄(dXY , y), (10)

where y = |Im[ω]|. In the second line of Eq. (10) we as-

sume a Lieb-Robinson-type bound |〈G|[ŜX(t), V̂Y ]|G〉| ≤
C(dXY , t), whose expression will be given in Secs. II C-
II D when we consider systems with different range of
interaction. At large t, C(dXY , t) equals the constant
trivial bound 2‖SX‖‖VY ‖, so Ω̄(dXY , y) is finite for any
ω with Im(ω) 6= 0, but diverges as Ω̄(dXY , y) ∼ 1/y when
y → 0, so gives no bound on the desired |ΩXY (0)|.

Nevertheless, we can obtain a bound on |ΩXY (0)| from
the above by using a powerful technique from complex
analysis. Notice that for any finite system size L, Eq. (9)
guarantees that ΩXY (ω) is complex analytic in the region
C\K∆, where K∆ = {ω ∈ R|ω ≥ ∆ or ω ≤ −∆}, as
shown in Fig. 1. The analytic structure allows us to
improve the bound on |ΩXY (ω)| over the initial bound
in Eq. (10), by applying the following lemma (Thm. 2.12
in Ref. [43]):

Lemma 1. If g(z) is complex analytic in a domain (a
simply connected open region) S, then u(z) = ln |g(z)| is

a subharmonic function in S, i.e. for any z0 ∈ S and
ρ > 0, if the circular region defined by |z − z0| ≤ ρ is
contained in S, then

u(z0) ≤ 1

2π

∫ 2π

0

u(z0 + ρeiθ)dθ. (11)

To bound |ΩXY (0)|, let f(ξ) be a complex analytic
function in a domain S containing the unit disk D, such
that f(0) = 0 and the image f(D) is also a domain with
f(D) ∩ K∆ = ∅. Then ΩXY [f(ξ)] is complex analytic
for ξ ∈ S, so according to Lemma 1, ln |ΩXY [f(ξ)]| is
subharmonic in S, therefore

ln |ΩXY (0)| ≤ 1

2π

∫ 2π

0

ln |ΩXY [f(eiθ)]|dθ

≤ 1

2π

∫ 2π

0

ln Ω̄[dXY , |Imf(eiθ)|]dθ.(12)

We will see that the integration over θ in the last line is
convergent despite Ω̄(dXY , y) diverging when y → 0.

The rest of our task is to insert the LRB of specific
systems into Eq. (10) to get Ω̄(dXY , y), and then choose
a suitable f(ξ) to compute the second line of Eq. (12).
Notice that the inequality (12) holds for all such functions
f(ξ) (satisfying the conditions mentioned above), so we
will choose a f(ξ) to optimize this bound.

B. Power-law interactions with α > 2D

We start with the simplest case: α > 2D and all inter-
actions are two body, i.e. all the hX in Eq. (6) are of the
form hX = hijViWj where Vi,Wj are local operators with
finite norm and finite support separated by a distance dij
and hij are real parameters satisfying hij ≤ Cd−αij [53].

Similar to the P(x) notation, throughout this paper we
use C to denote a positive constant independent of r and
t, and C in different equations or in different parts of
the same equation need not be the same. In this case
we use the Lieb-Robinson bound with an algebraic light
cone [54] proved in Ref. [29]

C(r, t) ≤ C exp

(
vt− r

tγ + C

)
+
Ctα(1+γ) + Ctα

rα
, (13)

where γ = (1 + D)/(α − 2D). Inserting into Eq. (10)
gives

Ω̄(r, y) =

∫ t0

0

C(r, t)e−ytdt+

∫ ∞
t0

Ce−ytdt (14)

≤ Ct0
2

[e−r + e(v−y)t0−r/(tγ0+C)] + C
e−yt0

y

+
1

rα

[
C

Γ(α+ 1)

yα+1
+ C

Γ[α(γ + 1) + 1]

yα(γ+1)+1

]
,

where for t > t0 ≡ (r/v)1/(γ+1) we use the trivial bound
C(r, t) ≤ C, and in the second line we use Jensen’s in-
equality since the integrand is convex. The second line
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in Eq. (14) decays subexponentially in r, while the last
line decays algebraically, so the term proportional to r−α

dominates the long-distance behavior of Ω̄(r, y). Insert-
ing Ω̄(r, y) into Eq. (12) with f(ξ) = ξ, one obtains
Eq. (3) where the subleading factor P(ln r) is a constant
in this case. See App. A 1 for details.

C. Power-law interactions with α > D

The bound in the previous section does not apply to
the case D < α < 2D, and is limited to two-body (two-
cluster) interactions. In this section we consider the more
general case where the hX in Eq. (6) satisfies [2]∑

X:X⊃{i,j}

‖hX‖ ≤
h0

dαij
, (15)

for all i and j, with α > D. In this case, the Hastings-
Koma bound [2] is the tightest general LRB:

‖[ŜX(t), V̂Y ]‖ ≤ min{C evt

dαXY
,C}, (16)

where v is a positive constant. Using
|〈G|[ŜX(t), V̂Y ]|G〉| ≤ ‖[ŜX(t), V̂Y ]‖, and substitut-
ing C(dXY , t) in Eq. (10) by the RHS of Eq. (16)
gives

Ω̄(r, y) =

∫ ∞
0

C(r, t)e−ytdt

=

∫ t0

0

C
e(v−y)t

rα
dt+

∫ ∞
t0

Ce−ytdt

≤ Ct0
1 + e(v−y)t0

2rα
+ C

e−yt0

y

=
Ct0
2rα

+ C(
t0
2

+
1

y
)e−yt0

≤

{
Ct0e

−yt0/y, y ≤ v,
Ct0r

−α, y > v.
(17)

where we define vt0 = lnC + α ln r and the third line
follows from Jensen’s inequality since the integrand is
convex.

Now we insert Eq. (17) into Eq. (12), with the con-
formal mapping f(z) = gv(bz) where b ∈ (0, 1) is a free
parameter and [55]

gv(z) =
2v

π
arctanh

(
2z

z2 + 1
tanh

∆π

2v

)
. (18)

Eq. (12) becomes

ln |ΩXY (0)| ≤ 2

π

∫ π/2

0

[ln(Ct0)− ln y(θ)− y(θ)t0]dθ

= ln(Ct0)− 2

π

∫ π/2

0

[ln y(θ) + y(θ)t0]dθ,

(19)

where y(θ) = Im[gv(be
iθ)]. The image of the unit disk

under the mapping ω = gv(z) is shown in Fig. 1. For
b < 1, the first term in the integral in Eq. (19) gives a
constant independent of r, but this constant diverges as
b→ 1. In the limit b→ 1, y(θ) becomes a step function:
y(θ) = 0 for θ < θ0 while y(θ) = v for θ > θ0, where θ0

satisfies cos θ0 = tanh ∆π
2v and is marked in Fig. 1. Then

in the limit b → 1 the second term in the integral in
Eq. (19) is

−t0
2

π

∫ π/2

0

ydθ = −2t0v(π/2− θ0)/π

= −2t0v

π
arcsin

(
tanh

∆π

2v

)
. (20)

Putting things together, we get

|ΩXY (0)| ≤ Pb(ln r)r−α1(b), (21)

where Pb(ln r) is a polynomial in ln r for any b < 1, but
its coefficients diverge as b→ 1, while

lim
b→1

α1(b) =
2α

π
arcsin

(
tanh

∆π

2v

)
.

Minimizing the RHS of Eq. (21) with respect to b for
each r, we obtain the result in Eq. (3) and Tab. I. [The
P(ln r) factor may have a higher degree than Pb(ln r).]
See App. A 2 for a detailed derivation.

D. Short-range interacting systems

The method in Sec. II A also significantly improves
the LPPL bounds for systems with short range inter-
actions, either exponentially decaying or strictly finite
ranged. Specifically, we consider systems whose Hamil-
tonians Eq. (6) satisfy [2]∑

X:X⊃{i,j}

‖hX‖ ≤ h0e
−µdij , (22)

for all i and j, where µ is some positive constant. The
Lieb-Robinson bound is [2]

C(r, t) ≤ Ce−µ(r−vt). (23)

Notice that the RHS of Eq. (23) can be obtained from
the RHS of Eq. (16) with the substitutions r → er, α →
µ, v → µv. We can therefore directly make this substitu-
tion in the results of Sec. II C and obtain the bound

|ΩXY (0)| ≤ P(r)e−µ1r (24)

with µ1 given in Tab. I. We see that for ∆ � v our
bound gives µ1 ≈ ∆/v, which improves the previous best
bound µ1 = µ/(1 + 2µv/∆) ≈ ∆/(2v) by approximately
a factor of 2. Furthermore, if one wants a tighter bound
for a specific model, one can use the LRB in Eq. (32) of



6

Ref. [4]: C(r, t) ≤ Ceωm(iκ)t−κr,∀κ > 0, where ωm(iκ)
is some (efficiently computable) function of κ (Ref. [4]
mainly deals with systems with finite range interactions,
but the method can be directly generalized to systems
with exponentially decaying interactions). This leads to
a bound of the same form as Eq. (24) in which µ1 is a
function of κ. One can then maximize µ1(κ) over κ > 0.
This method gives further quantitative improvement for
a specific model, especially at large ∆/v.

III. GENERALIZATION TO GAPPED
DEGENERATE GROUND STATES

In this section we generalize our bounds to gapped sys-
tems with degenerate ground states. We begin with a
straightforward extension. Notice that if the system has
a subspace H1 ⊆ H such that both the Hamiltonian H
and the perturbation VY leave H1 invariant (this is not
required for SX), and the ground state |G1〉 of H1 is non-
degenerate and gapped (within H1), then all our proofs
in the previous section applies to this subspace H1, pro-
vided that P̄G in Eq. (7) is understood as the projector
to all the excited states within H1. In particular, if the
system has a set of conserved quantum numbers that
commute with both H and VY and distinguish all the
gapped degenerate ground states, then our bounds apply
to all the ground states.

Nevertheless, this simple extension does not apply if
the perturbation VY breaks the conserved quantities. It
also fails if the degeneracy is not due to any symmetry at
all, which includes the important class of topological de-
generacy, where the (approximately) degenerate ground
states cannot be distinguished by local conserved quan-
tum numbers. In the following we present a more general
treatment for degenerate ground states (motivated by the
method in Ref. [44]), which shows that all our results in
Tab. I still hold provided that 〈SX〉 is averaged over all
the (nearly) degenerate ground states with equal weights.
This can be thought of as the temperature T → 0 limit
of the statistical mechanical average, as long as this limit
is taken after the thermodynamic limit L→∞, in which
the splitting of ground state degeneracy vanishes.

Let us denote the degenerate ground states of H(λ) =
H + λVY as |Ga(λ)〉, with energy Ea0 (λ), for a =
1, 2, . . . , d, respectively. Notice that we do not require
the degeneracy to be exact (which is important for treat-
ing topological degeneracy), but only that at each λ, all
the ground state energies Ea0 (λ) are separated from the
rest of the spectrum (the excited states) by at least an
amount ∆(λ) > 0, and ∆(λ) is uniformly bounded from
below, i.e. ∆ ≡ infλ∈[0,1] ∆(λ) > 0. [Similar to the non-
degenerate case, as long as ∆(0) > 0, the uniform gap
condition is always satisfied for sufficiently small ‖VY ‖,
as guaranteed by Weyl’s inequality.]

The method follows Sec. II A, but now using degener-
ate perturbation theory. If some of the ground states are
exactly degenerate at some λ, then we have some freedom

to choose a basis for the exactly degenerate subspace, and
it can be shown that [44] it is always possible to choose
a suitable basis for the this subspace such that VY is
diagonal within this subspace and 〈Ga(λ)|∂λ|Gb(λ)〉 = 0
whenever Ea0 (λ) = Eb0(λ). Then degenerate perturbation
theory generalizes Eq. (7) to

∂λ|Ga(λ)〉 =
P̄ a(λ)

Ĥ(λ)− Ea0 (λ)
VY |Ga(λ)〉, (25)

where

P̄ a(λ) = 1−
∑

b:Eb0(λ)=Ea0 (λ)

|Gb(λ)〉〈Gb(λ)| (26)

= P̄G(λ) +
∑

b:Eb0(λ)6=Ea0 (λ)

|Gb(λ)〉〈Gb(λ)|,

where P̄G(λ) ≡ 1̂−
∑d
b=1 |Gb(λ)〉〈Gb(λ)| is the projection

operator to the space of all excited states. Inserting the
second line of Eq. (26) into Eq. (25), we get

∂λ|Ga(λ)〉 =
P̄G(λ)

Ĥ(λ)− Ea0 (λ)
VY |Ga(λ)〉+

d∑
b=1

Qab|Gb(λ)〉,

(27)
where

Qab =

{
〈Gb(λ)|VY |Ga(λ)〉
Eb0(λ)−Ea0 (λ)

, if Eb0(λ) 6= Ea0 (λ),

0, if Eb0(λ) = Ea0 (λ),
(28)

is an anti-Hermitian matrix (Qab)∗ = −Qba. We
now consider the expectation value 〈SX〉λ of a
local observable SX averaged over all degenerate
ground states {|Gb(λ)〉}db=1, i.e. we define 〈O〉λ ≡
1
d

∑d
b=1〈Gb(λ)|O|Gb(λ)〉 for any operator O. Then

Eq. (8) becomes

∂λ〈ŜX〉λ =

〈
ŜX

P̄G(λ)

Ĥ(λ)− Ea0 (λ)
V̂Y

〉
λ

+ c.c., (29)

where, importantly, the contribution of the second term
in Eq. (27) cancel due to anti-Hermiticity of Qab. The
rest of Sec. II A generalizes in a straightforward way, with
the only difference being that the ground state expec-
tation value 〈G(λ)| . . . |G(λ)〉 is replaced by the average
〈. . .〉λ. Lieb-Robinson bounds can still be used as we

have 〈[ŜX(t), V̂Y ]〉λ ≤ ‖[ŜX(t), V̂Y ]‖ ≤ C(r, t). All re-
sulting bounds remain the same as those listed in Tab. I.

IV. IMPLICATIONS FOR FINITE SIZE
NUMERICAL SIMULATIONS

In this section we present a straightforward application
of our results, bounding the finite size errors (FSEs) of
local observables in gapped ground states of power-law
systems, generalizing the bounds for locally-interacting
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systems proved in Ref. [37]. The basic configuration for
the 1D case is illustrated in Fig. 2. The FSE for a local
observable ŜX measured in a L-site calculation is defined
as δ〈ŜX〉L ≡ |〈ŜX〉L − 〈ŜX〉∞|, which can be consid-

ered as the effect of the boundary interaction V̂Y on ŜX ,
since removing V̂Y from the thermodynamic Hamiltonian
Ĥ decouples the finite system and the outside, leading
to 〈ŜX〉L = 〈ŜX〉Ĥ−V̂Y . We assume that the spectral

gap ∆L(λ) of the interpolated Hamiltonian Ĥ − λV̂Y is
uniformly bounded from below minλ∈[0,1] ∆L(λ) = ∆ >
0 [56]. Under this assumption, we can apply our main

result Eq. (3) to upper bound δ〈ŜX〉L. A complication

here is that V̂Y contains infinitely many terms, including
those that are very close to ŜX , so r = dXY is zero. To
solve this issue, we can write

V̂Y =
∑

i∈L,j /∈L

V̂ij , (30)

where the summation is over all the interaction terms
V̂ij with i in the L-site system and j outside. Insert-
ing Eq. (30) into Eq. (8), and using Eqs. (9-12) to upper

bound the contribution of each individual V̂ij term inde-
pendently, we get

|δ〈ŜX〉L| ≤
∑

i∈L,j /∈L

‖V̂ij‖P(ln riX)/rα1

iX . (31)

In the following we treat the 1D case for simplicity, and
present the derivation in arbitrary dimension in App. B 2.
Let R = L/2 and δ(r) = P(ln r)/rα1 , we have

|δ〈ŜX〉L| ≤
∑

−R≤i≤R,|j|>R

δ(|i|+ 1)/(j − i)α

≤
∑

−R≤i≤R

Cδ(|i|+ 1)/(R+ 1− i)α−1

≤
R+1∑
i=1

P(ln i)i−α1(R+ 2− i)1−α. (32)

The following lemma gives a bound for the convolutional
sum (see App. B 1 for proof):

Lemma 2. Let η, ζ be real constants satisfying 0 < η ≤
ζ. Then

R−1∑
r=1

P(ln r)

rζ(R− r)η
� P(lnR)×

{
R−η, if ζ ≥ 1,

R1−η−ζ , if ζ < 1,
(33)

where the notation f(R) � g(R) means that there ex-
ist positive constants c1, c2 independent of R such that
c1g(R) ≤ f(R) ≤ c2g(R) for all R ∈ Z≥1.

Applying Lemma 2 to Eq. (32), we obtain Eq. (5) with

α3 =

{
α1 + α− 2 if α1 ≤ 1

α− 1 if α1 > 1

for 1 < α ≤ 2, and α3 = α − 1 for α > 2, which is the
result in Tab. I for D = 1.

FIG. 2: Upper bounding finite-size error with the LPPL,
illustrated for a 1D chain. The LPPL principle immediately
gives an upper bound on finite size error of local observables in
numerical simulation of gapped ground states, by recognizing
V̂Y as the interactions between the sites of the finite system
and sites lying outside.

V. IMPROVED BOUNDS ON GROUND STATE
CORRELATION DECAY

In this section we show that the method in Sec. II A
also significantly improves bounds on correlation decay of
gapped (possibly degenerate) ground states, compared
to previous results [2, 36]. We first obtain an integral
formula that relates ΩXY (ω) in Eq. (9) and the connected
correlation function 〈SXVY 〉c ≡ 〈SXVY 〉 − 〈SX〉〈VY 〉 in
the gapped ground state |G〉. Integrating the second line
of Eq. (9) along the imaginary axis, we have∫ +∞i

−∞i
ΩXY (ω)dω =

∫ +∞i

−∞i
dω〈G|ŜX

iP̄G

ω − ∆̂
V̂Y |G〉

−
∫ +∞i

−∞i
dω〈G|V̂Y

iP̄G

ω + ∆̂
ŜX |G〉

= π〈G|ŜX P̄GV̂Y |G〉+ c.c.

= 2π〈SXVY 〉c, (34)

where we used the following equality∫ +∞i

−∞i

1

ω − µ
dω = −πi sgn(µ). (35)

With Eq. (34), we can obtain an upper bound on
|〈SXVY 〉c| by integrating |ΩXY (ω)| along the imaginary
axis. Furthermore, it can be proved that (see App. C)
|ΩXY (ω)| on the imaginary axis can always be upper
bounded by the upper bound of |ΩXY (0)| obtained by
Eq. (12) (we denote this upper bound by |Ω̄XY (0)|).
Therefore, we can use the upper bound |ΩXY (iy)| ≤
min[|Ω̄XY (0)|, Ω̄(dXY , y)]. Notice that the integration on
this bound on iy is guaranteed to converge provided one
uses the best LRB, since C(dXY , t) ∝ tν at small t with
ν ≥ 1, and so Ω̄(dXY , y) in Eq. (10) decays at least as
y−ν−1 at large y. This upper bound yields

2π|〈SXVY 〉c| ≤
∫ +∞

−∞
|ΩXY (iy)|dy (36)

≤ 2y0|Ω̄XY (0)|+ 2

∫ ∞
y0

Ω̄(dXY , y)dy,

for any y0 > 0 [for the optimal result, y0 should satisfy
Ω̄(dXY , y0) = |Ω̄XY (0)|].
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For example, for D < α < 2D, we have

Ω̄(r, y) ≤ C

rα

[
e(v−y)t0 − 1

v − y
+
e−yt0 − 1

y

]
+ C

e−yt0

y
.

(37)
Inserting Eq. (37) into Eq. (36) and taking y0 = v, we
see that the integral of the term in the square bracket
converges to a constant independent of r, and there-
fore the second term in the last line of Eq. (36) is
bounded by C/dαXY . For |Ω̄XY (0)| we use the result of
Sec. II C [Eq. (21) with the optimal b]. In the end we
obtain

|〈SXVY 〉c| ≤ P(ln dXY )/dα1

XY . (38)

Other cases in Tab. I can be treated in an identical man-
ner, by inserting the results of Sec. II into Eq. (36). In all
cases, one obtains Eq. (4) with α2 = α1 for the power-law
cases or µ2 = µ1 for short-range interacting cases.

VI. CONCLUSION

We have proved a locality principle for gapped ground
states in systems with power-law (1/rα) decaying interac-
tions: when α > D, the response of a local observable SX
to a spatially separated local perturbation VY decays as a
power-law (1/rα1) in distance, provided that VY does not
close the spectral gap. When α > 2D, the bound on the
exponent α1 that we obtain, α1 = α, is tight. We proved
this using a method that avoids the use of QAC and in-
corporates techniques of complex analysis. Our method
also improves bounds on ground state correlation decay,
even in short-range interacting systems.

Our results have profound significance in studying the
ground state properties of power-law interacting systems.
At a fundamental level, the LPPL bounds generalize
the notion of locality to gapped ground states of power-
law systems, implying that the local properties of such
ground states are stable against distant local perturba-
tions. At a more practical level, we showed how our
results immediately lead to an upper bound on finite size
error in numerical simulations of gapped ground states,
which revealed that FSEs generally decay as a power-
law (1/Lα3) in system size (provided that α or the spec-
tral gap ∆ is not too small). A corollary of this is the
existence of thermodynamic limit for local observables in
ground states of power-law systems, under the spectral
gap assumption stated in Sec. IV.

We now discuss some open questions and future direc-
tions. One open question concerns whether the power
law exponents α1 and α2 given in Tab. I are tight when
D < α < 2D: we see that in this case both of them are
strictly smaller than α, yet for all gapped power-law sys-
tems we know, no correlations decay slower than 1/rα,
which strongly suggests that our bounds can further be
improved in this case. An interesting future direction is
to generalize our results to systems of interacting bosons,
such the Bose-Hubbard model, where our current bounds

do not apply due to the interaction hX in Eq. (6) having
infinite norm, thereby violating Eq. (15) and the corre-
sponding LRBs. However, our method in Sec. II A may
still work if we incorporate Eq. (10) with recent LR-type
bounds for interacting bosons [3, 45–47]. It will then
be interesting to see how the exponents in Tab. I get
modified. Another future direction is to prove the sta-
bility of the spectral gap against extensive local pertur-
bations, for example a small external field on every site
in TFIM. For locally interacting systems, this has been
proved for gapped frustration-free ground states under
the local topological quantum order condition [48–50],
where an essential tool in the proof is Hastings’ QAC
Eq. (2). It is interesting to investigate if our new method
can improve these results and extend them to power-law
systems.

Appendix A: Some details for Sec. II

In this appendix we provide some technical details for
Sec. II.

1. From Eq. (14) to Eq. (3)

Our task here is to insert Eq. (14) into Eq. (12)
to prove Eq. (3). We first simplify the last line of
Eq. (14): notice that for y = Imf(eiθ) = sin θ < 1,

we have e(v−y)t0−r/(tγ0+C) ≤ Ce−yt0/y, r−αy−α−1 ≤
Cr−αy−α(γ+1)−1, and t0e

−r ≤ Cr−αy−α(γ+1)−1. There-
fore

Ω̄(r, y) ≤ (Ct0 + Cy−1)e−yt0 + Cr−αy−α(γ+1)−1. (A1)

The second term in Eq. (A1) dominates at small and large
y, while the first term is only important in an intermedi-
ate region (y1, y2), where y1,2 = x1,2r

−1/(γ+1) and x1, x2

are the two solutions to the equation (and are indepen-
dent of r)

(x+ C)e−xv
−1/(γ+1)

= x−α(γ+1). (A2)

In summary,

Ω̄(r, y) ≤

{
(Ct0 + Cy−1)e−yt0 , y1 ≤ y ≤ y2

Cr−αy−α(γ+1)−1, 0 < y < y1 or y > y2.

(A3)
[In case Eq. (A2) has no solution, then Ω̄(r, y) is always
bounded by the second line of Eq. (A3), and our fol-
lowing derivations still work with minor modifications.]
Inserting Eq. (A3) into Eq. (12), we have

ln |ΩXY (0)| ≤ lnC− 2α

π
(π/2− θ2 + θ1) ln r (A4)

+

∫ θ2

θ1

[
ln

(
Ct0 +

C

sin θ

)
− t0 sin θ

]
dθ,



9

where y1,2 ≡ sin θ1,2 = x1,2r
−1/(γ+1). Using θ1,2 =

O[r−1/(γ+1)], we see that all but the lnC − α ln r term
are of order r−1/(γ+1), r−1/(γ+1) ln r, or r−2/(γ+1), all of
which are upper bounded by a constant for r ≥ 1. This
proves Eq. (3) with the subleading factor P(ln r) being a
constant.

2. From Eq. (19) to Eq. (3)

In Sec. II C we analyzed the asymptotic behavior of
Eq. (19) at large r and argued that it leads to Eq. (3)
with α1 given in Tab. I. In this section we provide a more
detailed and rigorous derivation, which in addition gives
the polynomial prefactor (up to an overall multiplicative
constant).

We begin by upper bounding the first term in the inte-
grand in Eq. (19). To this end, we obtain a simple lower
bound for y(θ) as follows:

y(θ) =
2v

π
Im

[
arctanh

(
2z

z2 + 1
tanh

∆π

2v

)]
≥ 2v

π
arctan

[
Im

(
2z

z2 + 1

)
tanh

∆π

2v

]
= C arctan

[
C

(1− b2)b sin θ

b4 + 2b2 cos 2θ + 1

]
≥ C(1− b) sin θ, (A5)

for b ≥ 0.9, where in the second line we used
Im[arctanhx] ≥ arctan Im[x] (which follows from the fact
that Im[arctanh(x+ iε)] is monotonically increasing in x
for ε > 0, x > 0), and the proof for the last line is el-
ementary. Therefore the first term in the integrand in
Eq. (19) can be upper bounded by

− 2

π

∫ π/2

0

ln y(θ)dθ ≤ lnC− ln(1− b). (A6)

This may be a crude bound, but it captures the leading
singularity of this term as b → 1. We now study the
second term in the integrand in Eq. (19) near b→ 1. We
have

∂by(θ) = Im[∂bgv(z)]

= Im

[
1

ib
∂θgv(z)

]
= −1

b
Re[∂θgv(z)], (A7)

therefore

∂b

∫ π/2

0

y(θ)dθ = −1

b

∫ π/2

0

dθ∂θRe[gv(z)]

= −1

b
Re[gv(ib)− gv(b)]

=
1

b
gv(b), (A8)

the limit of which at b → 1 is ∆. Since this derivative
exists for b ∈ [b0, 1] for any b0 > 0, along with Eq. (20),
we obtain ∫ π/2

0

ydθ ≥ C0 −C(1− b), (A9)

where C0 ≡ v arcsin[tanh(∆π/2v)]. Inserting
Eqs. (A6,A9) into Eq. (19), we get

ln |ΩXY (0)| ≤ −α1 ln r + ln
Ct0
1− b

+ Ct0(1− b). (A10)

Minimizing the RHS of Eq. (A10) [the minimum is at
1 − b = 1/(Ct0)], we get Eq. (3) where the polynomial
prefactor can be taken as P (ln r) = C(ln r)2.

Appendix B: Finite-size error bounds

In this appendix section we provide some missing de-
tails in Sec. IV, including a proof of Lemma 2 and a
derivation of the bounds in arbitrary spatial dimension.

1. Proof of Lemma 2

For simplicity we assume R = 2R1 + 1 is an odd num-
ber (the proof for even R is similar). We have

R−1∑
r=1

P(ln r)

rβ(R− r)α
=

(
R1∑
r=1

+

R−1∑
r=R1+1

)
P(ln r)

rβ(R− r)α

=

R1∑
r=1

{
P(ln r)

rβ(R− r)α
+

P[ln(R− r)]
rα(R− r)β

}

�
R1∑
r=1

[
P(ln r)

rβRα
+

P(lnR)

rαRβ

]
,

≤
R1∑
r=1

[
P(lnR)

rβRα
+

P(lnR)

rαRβ

]
, (B1)

where in the second line we substituted r by R− r in the
second sum, and in the third line we used P[ln(R−r)](R−
r)−γ � P(lnR)R−γ for 1 ≤ r ≤ R1 and γ > 0 since
P[ln(R/2)] ≤ P[ln(R − r)] ≤ P(lnR) and R−γ ≤ (R −
r)−γ ≤ (R/2)−γ . Now applying

∑R1

r=1 r
−γ �

∫ R1

r=1
r−γdr

to the last line of Eq. (B1) and calculating the integral,
we obtain Eq. (33).

2. Derivation of the bounds in higher dimension

In Sec. IV we derived the finite size error bound Eq. (5)
in 1D. In the following we generalize the derivation to
arbitrary spatial dimension. The configuration is shown
in Fig. 3. Without loss of generality we can assume that
the system has a spherical shape (the sphere S in Fig. 3),
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FIG. 3: Derivation of the finite-size error bound in higher
spatial dimension. S is the finite system with radius R, S is
its complement, ~r1, ~r2 are respectively the positions i, j of the
power-law interaction Vij , S1 ⊆ S is a subsystem centered at
~r1 with radius R− r1 (so that S1 touches S).

since the error in other cluster shapes can be upper and
lower bounded by spheres with radius proportional to its
linear dimension. Eq. (31) is still valid, so we have

|δ〈ŜX〉L| ≤
∑

~r1∈S,~r2∈S

P(ln r1)

rα1
1 |~r2 − ~r1|α

≤
∑

~r1∈S,~r2∈S1

P(ln r1)

rα1
1 |~r2 − ~r1|α

≤
∑
~r1∈S

P(ln r1)

rα1
1 (R− r1)α−D

≤
R−1∑
r1=1

P(ln r1)

rα1−D+1
1 (R− r1)α−D

, (B2)

where in the second line we extended the sum in ~r2 from S
to S1 (which contains S), in the third and the last lines we
upper bounded the sums by integration [with a constant
coefficient absorbed into P(ln r1)], and the integrals can
be calculated analytically due to the spherical geometry.
Applying Lemma 2 to Eq. (B2), we obtain Eq. (5) with
α3 summarized in Tab. I.

Appendix C: Bounds for correlation decay: proof
that |ΩXY (iy)| ≤ |Ω̄XY (0)|

In this section we prove the claim we made in Sec. V
that |ΩXY (iy)| for y ∈ R can always be upper bounded
by the upper bound of |ΩXY (0)| obtained by Eq. (12).
We prove this for the ΩXY (ω) in Sec. II C, i.e. power-law
systems with α > D, and the proofs for other cases are
similar.

We begin by recalling a simple fact about subharmonic
functions: if p(ω) is a real-valued subharmonic function
and q(ω) is a real-valued harmonic function such that
p(ω) ≤ q(ω) on the boundary of a simply-connected
domain S, then p(ω) ≤ q(ω) everywhere in S. Now
take p(ω) to be the subharmonic function ln |ΩXY (ω)|

and take q(ω) to be the unique harmonic function which
agrees with ln Ω̄(r, y) on the boundary of the region Sb
bounded by the parametric curve gv(be

iθ), θ ∈ [0, 2π],
as plotted in Fig. 1, where gv(z) is defined in Eq. (18),
b ∈ (0, 1), and later we will consider the limit b → 1.
By construction, we have p(ω) ≤ q(ω) on ∂Sb, therefore
p(ω) ≤ q(ω) everywhere in Sb. Using the mean-value
property of harmonic functions, in the limit b → 1 we
have

lim
b→1

q(0) = lim
b→1

1

2π

∫ 2π

0

q[gv(be
iθ)]dθ

= lim
b→1

1

2π

∫ 2π

0

ln Ω̄[r, |Imgv(beiθ)|]dθ

= ln |Ω̄XY (0)|. (C1)

Therefore, to prove that |ΩXY (iy)| ≤ |Ω̄XY (0)|, it suffices
to prove that q(iy) is monotonically decreasing in y for
y ≥ 0. In the following we prove this for any b ∈ (0, 1).

Since q(ω) is harmonic, for illustrative purpose we use
the language of electrostatics. From the expression of
Ω̄(r, y) in Eq. (17) it is clear that on the boundary of Sb
the potential q(ω) is strictly decreasing in the direction
of increasing |y|. In the following we use proof by contra-
diction: if q(iy) is not monotonically in y for y ≥ 0, then
there must exist y1, y2 satisfying 0 < y1 < y2 < gv(ib)/i
such that q(iy1) = q(iy2). Let l1, l2 be the equipotential
lines passing through iy1, iy2, respectively. Equipoten-
tial lines cannot terminate in free space, since otherwise
it would imply there is an electric charge at the end point.
l1 and l2 cannot intersect anywhere, since for example if
they intersect at a point x+iy with x > 0, y > 0, then by
symmetry they also intersect at −x + iy, which implies
that l1, l2 enclose a region in which q(ω) is a constant,
which is impossible for a non-constant harmonic function.
By similar logic (and using the mirror symmetry with re-
spect to the real axis) neither l1 nor l2 can intersect with
the real axis, so we can focus our attention on the up-
per half plane. Furthermore, at most one of l1, l2 can
intersect with the boundary of Sb, since q(ω) is strictly
decreasing in the direction of increasing |y| on the bound-
ary. Without loss of generality suppose l1 does not inter-
sect the boundary. Then the only remaining possibility is
that l1 is a closed curve inside Sb. But this implies that
q(ω) is constant in the interior of l1, which is impossi-
ble for a non-constant harmonic function. In conclusion,
q(iy) must be monotonically decreasing in y for y > 0. [It
is straightforward to rule out the possibility of q(iy) be-
ing monotonically increasing in y: since if that’s the case
there must exist x, y with 0 < x < gv(b), 0 < y < gv(ib)/i
such that q(x) = q(iy). Considering the equipotential
curve passing through x, iy, −x, and −iy, we reach a
similar contradiction.]
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http://dx.doi.org/10.1103/PhysRevX.12.021039
http://dx.doi.org/10.1103/PhysRevLett.128.150602
http://dx.doi.org/10.1103/PhysRevLett.128.150602
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/10.1063/1.3490195
http://dx.doi.org/https://doi.org/10.1007/s00220-011-1346-2
http://dx.doi.org/https://doi.org/10.1007/s00220-011-1346-2
http://dx.doi.org/https://doi.org/10.1007/s00220-013-1762-6
http://dx.doi.org/https://doi.org/10.1007/s00220-013-1762-6

	I Introduction and overview of results
	II Locality of perturbations to gapped non-degenerate ground states
	A The improved method
	B Power-law interactions with >2D
	C Power-law interactions with >D
	D Short-range interacting systems

	III Generalization to gapped degenerate ground states
	IV Implications for finite size numerical simulations
	V Improved bounds on ground state correlation decay
	VI Conclusion
	A Some details for Sec. II
	1 From Eq. (14) to Eq. (3)
	2 From Eq. (19) to Eq. (3)

	B Finite-size error bounds
	1 Proof of Lemma 2
	2 Derivation of the bounds in higher dimension

	C Bounds for correlation decay: proof that |XY(i y)||XY(0)|
	 Acknowledgments
	 References

