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High-temperature properties of fermionic alkaline-earth-metal atoms in optical lattices
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We calculate experimentally relevant properties of trapped fermionic alkaline-earth-metal atoms in an optical
lattice, modeled by the SU(N ) Hubbard model. We employ a high-temperature expansion that is accurate when
the temperature is larger than the tunneling rate, similar to current regimes in ultracold atom experiments. In
addition to exploring the Mott insulator-metal crossover, we calculate final temperatures achieved by the standard
experimental protocol of adiabatically ramping from a noninteracting gas, as a function of initial gas temperature.
Of particular experimental interest, we find that increasing N for fixed particle numbers and initial temperatures
gives substantially colder Mott insulators after the adiabatic ramping, up to more than a factor of 5 for relevant
parameters. This cooling happens for all N , fixing the initial entropy, or for all N � 20 (the exact value depends
on dimensionality), at fixed, experimentally relevant initial temperatures.
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Introduction. The recent achievement of Fermi degeneracy
and Bose-Einstein condensation in ultracold alkaline-earth-
metal atoms [1] opens great opportunities in quantum
information processing [2], quantum simulations [3], atomic
clock experiments [4], and other precision measurements [5].
One fundamental property of fermionic alkaline-earth-metal
atoms is their intrinsic SU(N = 2I + 1) symmetry in
the nuclear spin (I ) degrees of freedom (bosonic alkaline-
earth-metal isotopes in contrast have even-even nuclei and
necessarily I = 0 [6]). Fermionic alkaline-earth-metal atoms
loaded in an optical lattice, as recently experimentally realized
in Ref. [7], are described by the SU(N ) Hubbard model where
N can be varied for a single isotope from 2 to 2I + 1 � 10 by
selectively populating hyperfine levels. Cold atom realizations
of this model open up a range of exciting and exotic physics
relevant to condensed matter: It is a simple limit of multiorbital
models describing transition-metal oxides, is important in
theoretical generalizations of the Fermi-Hubbard model, and
displays phenomena such as possible antiferromagnetism,
superconductivity, nematic order, valence bond, and spin-
liquid phases [3,8–11].

As a first step toward reaching the low temperatures
necessary to observe these states, here we study the SU(N )
Hubbard model’s finite-temperature Mott-metal crossover.
One particularly interesting finding is that increasing N while
fixing the initial temperature can lead to a more than fivefold
decrease, compared to N = 2, in final temperature after
adiabatic lattice loading, relative to the temperature scales of
interesting physics.

We calculate density and entropy profiles of lattice alkaline-
earth-metal atoms to second order in t/T , the tunneling
rate over the temperature [see Eq. (1)]. This calculation is
accurate for T � t , regardless of the on-site interaction U .
This includes the “unquenched Mott insulator (MI)” regime
t � T � U that has been realized in SU(2) alkali gases
[12]. For the SU(2) spin-1/2 case, sophisticated, numerically
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intensive algorithms have yielded series to tenth order [13].
For properties in the experimental regime, T � t in three
dimensions, the second-order expansion agrees quantitatively
(�1% error) with longer series and dynamical mean-field
theory [14]. We also calculate final temperatures achieved by
standard experimental adiabatic ramping protocols.

Excitingly, our calculations show that applying the same
protocols as in SU(2) experiments will generate colder, less
compressible MI states as N increases, up to N ∼ 20. An
entropic argument supplementing the high-temperature expan-
sion supports that this effect persists down to temperatures
on the order of the superexchange energy where interesting
magnetic physics appears.

Alkaline-earth-metal atoms in deep optical lattices are well
described by the SU(N ) Fermi-Hubbard model [3]

H = −t
∑
〈ij〉,α

f
†
α,ifα,j + U

2

∑
i

n̂i(n̂i − 1) +
∑

i

Vini, (1)

where fα,j is a fermionic annihilation operator destroying
a particle of flavor α at site j , satisfying anticommutation
relations {fα,i ,f

†
α′,j } = δα,α′δi,j ,

∑
〈ij〉 indicates a sum over

nearest neighbors, Vi is the trapping potential at site i, α and
α′ are flavor indices that run from 1 to N , and the total on-site
density is n̂i ≡ ∑

α f
†
α,ifα,i .

Atomic limit: Experimental observables and T/U � 1
and T/U � 1 limits. First we give results in the atomic
limit (t = 0), the zeroth-order term in the high-temperature
series expansion in t/T . Throughout, we present analytic
results for the free-energy density F , from which the other
observables considered can be obtained by differentiating: The
average filling and entropy per site are 〈n〉 = −∂F/∂μ and
s = −∂F/∂T .

For the homogeneous system, the grand canonical free
energy per site for t = 0 is [8] F0 = −T ln z0 with the on-
site partition function z0 = ∑N

n=0 CN
n e−βε0(n), where ε0(n) ≡

(U/2)n(n − 1) − μn, β ≡ 1/T , kB = h̄ = 1 throughout, and
CN

n is the binomial coefficient. The average filling is n0 =
〈n〉0 where 〈O〉0 of a one-site operator O is defined as
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〈O〉0 ≡ 1
z0

∑
n O(n)CN

n e−βε0(n). The entropy is s0 = ln z0 +
(1/T )〈ε0(n)〉0.

It is illuminating to consider the observables in the
T � U and T � U limits. In the T � {U,μ} limit the
on-site partition function is z0(T � U ) ≈ ∑N

n=0 CN
n = 2N ,

the density is n0(T � U ) ≈ N/2, and the entropy density is
s0(T � U ) ≈ N ln 2. In contrast, in the MI limit defined by
t � T � U and μ 
= Un for all n, one term dominates z0 so
that z0 ≈ CN

n0
e−βε0(n0), with n0 chosen to minimize ε0(n0), and

s0 ≈ ln(CN
n0

). The metal boundary separating the n′ and n′ + 1
MI’s has similarly simple expressions.

Cold atomic systems are confined in trapping potentials,
which we treat with a Thomas-Fermi or local density approx-
imation (LDA) [15]. We take the trapped system’s properties
at a point in space r to be those of the homogenous system
at a chemical potential μ(r) = μ0 − V (r). This is accurate
when V varies slowly compared to the state’s characteristic
lengths, which is frequently well satisfied. For simplicity,
and as an accurate description of most traps, we approximate
V (r) = mω2r2/2, where m is the particle mass and ω is the
trap frequency.

Figure 1 shows the density n and entropy s profiles,
illustrating the Mott plateaus at low temperatures. It also

n

n

n-
n s

n

n

FIG. 1. (Color online) Observables as a function of distance to
trap center r for N = 4 at T/U = 1/15, μ/U = 3.0, and in three
dimensions. Top: Density (solid: atomic limit; dashed: t/U = 0.04).
Although the value of the t/T is not deep in the regime where the
high-temperature expansion is valid, such a large value was chosen
so the effects would be visible in the density profile. Insets: Density
vs μ for N = 2, 5, and 10, showing N and n dependence. Left inset:
Zoom around the n = 1 shell. Right inset: Zoom around n = 1, 3,
5 for N = 2, 5, 10 with density and μ shifted by ns = 0, 2, 4 and
μs = 0, 2, 4 so that the Mott shells nearly overlap on the plot. Bottom:
Entropy (solid: atomic limit; dashed: t/U = 0.016; thin horizontal:
T � U deep Mott and deep metal limits discussed in text).

shows the effects of tunneling calculated later. At temperatures
T/U � 0.2 all curves are smooth and lack visible Mott
plateaus (not shown). Figure 1’s insets show the N dependence
near n = 1 and n = N/2. Although the density profiles shown
are at temperatures below the regime of validity t/T � 1, one
finds that the theory is inaccurate only near the metal between
Mott shells [14]. Working deeper in the approximation’s
regime of validity would lead to a smaller effect, invisible to the
eye. However, the qualitative effects are the same, only smaller.

Adiabatic loading. We theoretically study the protocol used
to realize bosonic [16] and fermionic [12,17] MI’s, essential
to understanding and optimizing the process. Remarkably, we
find that for the relevant N , the final T substantially decreases
with increasing N .

The procedure used to create MI’s is to first create a
degenerate, weakly interacting gas without a lattice. A lattice
is then ramped up to its final value. Ideally, the ramp
is sufficiently slow to be adiabatic. The adiabatic limit is
approached in recent boson experiments [16,18], and with
(presumably much) less than ∼50% entropy increases in
SU(2) Fermi experiments [12,17]. The limits of adiabaticity
are beyond the scope of our present work.

In the adiabatic limit entropy is conserved, and given
the initial state’s particle number N and entropy Si , one
can determine the final temperature by matching the particle
number and entropy to the initial state. Si is controlled
and measured through the temperature. Thus, we must first
determine Si from the initial temperature Ti .

For any initial state sufficiently cold to reach a MI, the
initial gas will be deeply degenerate, Ti � μ. For large N ,
the harmonic trap can be treated as having a continuous
density of states ν(ε) = (ε/ω)d−1/[ω(d − 1)!]	(ε), with 	(ε)
the Heaviside step function. Using this, the total particle
number and entropy of a d-dimensional trapped system are
N = N

d! (
μ

ω
)d and Si = Ti

ω
Nπ2

3(d−1)! (
μ

ω
)d−1 to lowest order in Ti/μ.

(To the same accuracy, the Fermi temperature is TF = μ.) At
fixed N , these imply Si ∝ N1/3. This will be crucial, and the
Supplemental Material [19] derives and explains it.

Figure 2 shows our adiabatic loading results for a three-
dimensional system. Although specific values depend on
microscopic parameters such as the scattering length as , lattice
spacing a, and trap length �, our qualitative findings are
independent of these. We determine the Hubbard parameters
using the standard deep lattice results [20] for experimental
parameters consistent with Ref. [21].

Figure 2 shows the final temperature after adiabatic loading
on a logarithmic scale as a function of Ti for N = 2, 4, 6, using
experimentally relevant parameters at fixed final lattice depth.
Figure 2 (inset) illustrates the effect of cooling on density
profiles obtained by increasing N . For reference, the coldest
alkaline-earth-metal gases in the weakly interacting regime
(initial state) have roughly Ti/μ = 0.14 for 173Yb (N = 6)
and Ti/μ = 0.26 [21] for 87Sr (N = 10) [1]. Also, we have
found that for deep lattices, the final rescaled temperature T/U

as a function of Ti/ω is nearly independent of lattice depth V0,
except for an overall scale factor.

One of our most interesting findings is the final tem-
perature’s N dependence: increasing N produces colder
MI’s when initial parameters are fixed in an experimentally
realistic way. In particular, this holds for fixed Ti , as occurs
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FIG. 2. (Color online) Adiabatic loading: Final temperature T/U

on a log scale as a function of initial temperature Ti/ω for N = 2,
4, 6 (top to bottom at low temperatures) at lattice depth V0 = 18ER ,
in three dimensions for t/U = 0 (solid) and t/U = 0.07 (dashed)
calculated with the second-order high-temperature series. Parameters
are fixed to experimental values for 173Yb [21]: We find U/ω = 50,
a/� = 0.4, and N = 5 × 104 particles using standard optical lattice
results for U [20]. The experimental initial gas temperature is Ti/ω =
5.2 (Ti/μ = 0.14 for N = 6). Parameters are roughly the same for
other alkaline-earth-metal atom experiments. Inset: Density profiles
after adiabatic loading for Ti/ω = 7.3 (Ti/μ = 0.14, 0.17, and 0.20
for N = 2, 4, 6, respectively).

when the initial gas is sympathetically cooled by another
species—an even more favorable situation is considered below.
A corollary follows since SU(N ) gases can be produced with
Ti’s comparable to current alkali SU(2) lattice experiments:
MI’s with T ∼ t � U or even lower are well within reach for
SU(N ) systems.

Our findings are a direct consequence of the rapidly
increasing t � T � U MI entropy. Considering the n = 1
state for simplicity, its entropy grows as Sf ∝ ln N , since
each of the N flavors is equally likely to occupy a site (the
reduced Pauli blocking plays no role in the atomic limit). For
the relevant range of N , N � 20, this logarithm grows faster
than the initial-state entropy, Si ∝ N1/3, given previously.
Increasing N , the MI’s entropy increased more than does
Si , and therefore the resulting MI is colder as one increases
N , as observed in Fig. 2. In the t � T � U limit of the
atomic limit theory for central unit occupation and negligible
multiple occupancy, in addition to the LDA approximation
used perviously, the calculation yields a simple expression for
Tf : Tf = aN2/3(Ti/ω) − b ln N . This demonstrates the de-
creasing temperature Tf with increasing N for small Ti/ω. The
details and values of a and b are discussed in the Supplemental
Material [19]. The situation is even more favorable if one lets
n scale with N : One finds that the MI entropy is proportional
to N and thus the final states get colder with increasing N for
all N . A similar argument explains the reversal of this effect
at high temperatures (see the Supplemental Material [19]).

While we observe this dramatic cooling when fixing Ti , the
actual situation may be even more favorable. Other cooling
procedures may fix Si , or equivalently Ti/μ, independent
of N . An alternative way to think about this is to realize

that the thermodynamic limit is taken fixing ω(N /N)1/d .
Thermodynamic functions are functions of this quantity, and
thus Si is a function of T/[ω(N /N)1/d ], so that fixing Si leads
to Ti ∝ 1/N1/d , which decreases with increasing N . Thus,
the final temperature decreases even faster than in the fixed
Ti case. Since we know how Ti scales with N at fixed Si ,
Fig. 2 allows one to read off the final temperatures. For fixed
Si the MI will get colder with increasing N for all N , even
for n = 1. Evaporative cooling is a candidate to fix Si , with an
added benefit that Pauli blocking becomes less important as N

increases so that Si ∝ Ti/μ may actually decrease.
Returning to the adequacy of our description of the

experimental loading process, there are two main issues:
nonadiabaticity and external confinement changes due to the
lattice laser. Although nonadiabatic effects are difficult to
calculate, if one assumes the entropy increases by a factor
of F during the lattice ramp, it is simple to read off the final
temperature from Fig. 2: A factor of F increase in entropy
is equivalent to a factor of F increase in Ti , since Si ∝ Ti .
We have treated the effects of external confinement changes
(not presented) and find that, as expected from our qualitative
arguments, this affects the reduction in temperature obtained
from increasing N by amounts on the order of a few percent.

Nonzero tunneling. To incorporate tunneling, we perform
a second-order expansion in t/T , equivalent to a finite-
temperature t/U expansion. Analogous results were recently
applied to SU(2) experiments [14], where they are quanti-
tatively accurate (�1% error) when T � t for the metallic
region (e.g., n ∼ 1.3) and for much lower T elsewhere (e.g.,
n ∼ 0, 1, and 2) [22,23]. Ongoing experiments are in this
regime, although SU(2) experiments have begun to reach
T � t . Longer series maintain agreement for T � t , but, being
divergent, series of all lengths give unphysical results for
T � t . Nevertheless, they may be useful to understand low-
temperature physics by analyzing their analytic structure [13].

We find the free-energy density to O[(t/T )2] is F = F0 −
2T d( t

U
)2〈n〉r [1 − 〈nl〉r

N〈n〉r ], where we define

{ 〈n〉r
〈nl〉r

}
= 1

z2
0

⎡
⎢⎣1

2

(
U

T

)2 ∑
n

(
CN

n

)2
{

n

n2

}
e−2βε0(n)

+
N∑

l=0

N∑
l = 0,

l 
= n

{
n

nl

}
gnl

⎤
⎥⎦, (2)

with gnl ≡ CN
n CN

l [ e−βU (n−l+1)+βU (n−l+1)−1
(n−l+1)2eβ(ε0(n)+ε0(l)) ]. We note the

second-order corrections can capture some nearest-neighbor
spin-spin correlations, in contrast to the atomic limit.

Figure 1 shows tunneling’s consequences. In the density
profiles, we see that it reduces the MI’s size, as expected.
In the entropy profiles, tunneling slightly increases the MI
entropy while significantly decreasing the metal entropy: In
the MI, tunneling reduces the excitation gap, increasing the
entropy, while in the metal, the increasing bandwidth lowers
the low-energy density of states, decreasing the entropy. We
also observe (Fig. 1 insets) that although the magnitude of
the tunneling corrections depends only weakly on n, the N

dependence depends more strongly on n. For n = 1, there is
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noticeable N dependence of the tunneling corrections, while
there is little for n = N/2.

We finally have considered the effect of tunneling on
the adiabatic loading, and find that it increases the final
temperature. This may be understood from Fig. 1: Tunneling
reduces the total entropy as a consequence of a small increase
in MI entropy and a relatively larger decrease in metal entropy.
The effects are small when t/T is small, as seen in Fig. 2.

We note that the corrections to LDA, important mainly
in the initial weakly interacting gas, are on the order of a
few percent. Therefore, these give a small correction to the
cooling, comparable to the tunneling corrections for a V0 =
10ER lattice.

Magnetic physics near the superexchange temperature.
The high-temperature expansion results presented above give
a fairly comprehensive picture for temperatures T � t , an
interesting and, for the near future, the most experimentally
relevant regime. However, a long-term experimental goal is to
reach interesting, possibly exotic, low-temperature magnetic
phases. These occur at a much lower temperature scale
T � J ∼ t2/U .

To study these lower temperatures, we use arguments
distinct from the high-temperature expansion. We note that
the SU(N ) Heisenberg model associated with the density n

MI for t � U has, at high temperatures, s = ln CN
n . Any

entropy below this results from superexchange. Hence, the
entropy at which superexchange begins to play a role is
the same as the entropy in the T � U regime found in the
zeroth-order high-temperature expansion. Based on this simple
argument we expect that the decrease of final temperatures

with increasing N after lattice loading applies down to the
scale where superexchange first becomes relevant. Conse-
quently, the Ti required to reach temperatures where magnetic
physics becomes relevant is roughly expected to increase
with N .

Conclusions and discussion. We studied the metal-Mott
insulator crossover using a high-temperature series expansion
technique, up to second order in t/T . We calculated the density
and entropy in the atomic limit and quantified how tunneling
reduces the size of the Mott insulating region, its flavor number
(N ), and filling (n) dependence, and how it increases the Mott
entropy while decreasing the metal entropy.

Additionally, we studied the standard experimental protocol
used to realize Mott insulators and showed that the final tem-
peratures significantly decrease with increasing N . We present
arguments suggesting this persists down to temperatures where
superexchange and interesting magnetic physics manifests.

Three-body losses might limit the observability of the shell
structure with n > 2. Nevertheless, based on Ref. [24]’s theory
we find, at least for 87Sr, that even fillings n � 5 may live
sufficiently long to explore their many-body physics.
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WHY, AT HIGH TEMPERATURES, HEATS

RATHER THAN COOLS WITH INCREASING N

Figure 2 of the main text shows that at low tempera-
ture, increasing N for experimentally relevant N while
fixing the initial temperature generates colder clouds.
However, it also shows that the trend is reversed at higher
temperatures. This may be somewhat counterintuitive,
as at very high temperatures the entropy should become
very high even in the deep lattice.
To understand this behavior, we first note that at the

higher temperatures the density profiles are quite differ-
ent than at low temperatures: they have lower central
density and are more spread out. Fig. 1 illustrates this
effect. In particular, there is no central Mott regime in
the final states and it turns out this reduces the entropy’s
dependence on N . In particular, we recall that at low
temperatures, the final state entropy grows with logN ,
while the initial state grew with N1/3 in three dimen-
sions; for the N ∼

< 20 of interest, the former grew faster
than the latter, leading to the cooling. In contrast, Fig. 1
illustrates that with the lower density clouds produced
at high temperature, there is no Mott region and the en-
tropy always scales roughly as N1/3 rather than logN ,
eliminating the cooling effect seen at low temperatures.
The details of this heating will depend on the central
filling, and will presumably usually occur at higher tem-
peratures for higher central fillings.
We note that this behavior also follows directly in the

t ≪ T ≪ U , central unit filling limit considered below.

WEAKLY INTERACTING GAS’S ENTROPY

DEPENDENCE ON N AT FIXED PARTICLE

NUMBER

In the main text we gave formulas for the parti-
cle number N and entropy S of the weakly interact-
ing trapped gas with the structure N ∝ N(µ/ω)d and
S ∝ (T/ω)N(µ/ω)d−1. Eliminating µ/ω in favor of

N in the entropy, we find S ∝ (T/ω)N
(

N

N

)1−1/d
=

(T/ω)N1/dN 1−1/d. In particular, this shows that in
d = 3, S ∝ N1/3, a fact crucial in the text for our qualita-
tive explanation of why, at low temperatures, increasing
N leads to a temperature decreasing with N after adia-
batically loading.
We also give a geometric picture to understand this

dependence. Fixing the number of particles fixes the
Fermi surface volume to some value V . If there are N
flavors of fermions, this volume is distributed over N
equal Fermi spheres of volume V/N . At low tempera-
tures, the entropy is proportional to the Fermi surface
area times the temperature. The Fermi surface area is
N times the Fermi surface area of each Fermi sphere,
namely N(V/N)(d−1)/d = V 1−1/dN1/d. Since the en-
tropy is proportional to this, this gives the scaling N1/d

derived above.

SCALING IN t ≪ T ≪ U LIMIT WITH UNIT

CENTRAL FILLING AND CENTRAL µ LOW TO

NEGLECT MULTIPLE OCCUPANCIES

For general parameters, the adiabatic loading calcula-
tion of the main text admits no analytic solution. How-
ever, under certain conditions (detailed below) an ana-
lytic solution is possible. We expect this simple limit to
provide a useful approximation and framework in which
to interpret the numerical results.

Specifically, we can analytically calculate the results
in the following conditions: (1) we use the zero’th order
high-temperature expansion applies, (2) t ≪ T ≪ U (this
augments the usual criterion for the high-temperature se-
ries, t ≪ T ), (3) central filling equal to one (equivalent
to a condition on the central chemical potential), and (4)
the central chemical potential small enough that multiple
occupancies are negligible. We comment on the validity
of these conditions. The approximation in (1) is accu-
rate at high temperatures T ∼

> t, as argued on general
grounds in the text and demonstrated for one case in
Fig. 2. Condition (2) is the most important regime con-
sidered in the paper, as it is deep in the Mott state and
the aim of current experiments. It is also the regime
in which the decrease of final temperature with increas-
ing N takes place. Condition (3) and (4) are satisfied
in many experiments and correspondingly are satisfied
for the experimentally realistic parameters we used to
generate Fig. 2. Thus, note that these conditions are ex-
perimentally relevant and encompass the most important
region of the results shown in Fig. 2 of the main text.

Under conditions (1), (3), and (4) above, we can ne-
glect multiple occupancies and the partition function of
the homogeneous system simplifies to z0 ≈ 1 + Neβµ,
and the density and entropy may be obtained from this
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FIG. 1: Top: density profiles for N = 2, 4, 6 (bottom curves
are N = 2 and N = 6, colored blue and gold, respectively,
and are extremely similar; top curve is N = 4.) of final states
after adiabatic loading for Ti/ω = 14.7 and other param-
eters corresponding to Fig. 2 of the main text. Note the
absence of a Mott regime at these high final temperatures.
Bottom: entropy profiles for N = 2, 4, 6 (top/blue, mid-
dle/dashed/purple, bottom/gold respectively), rescaled by

r2/N1/3, of final states after adiabatic loading for Ti/ω = 14.7

showing that the entropy scales as N1/3 at these high tem-
peratures rather than the more favorable logN obtained at
lower temperatures. (The r2 is the surface area factor that
multiplies the entropy density in the integral to obtain the
total entropy, and is included simply so one may more easily
see what regions of the system contribute most to the total
entropy.)

by taking derivatives as discussed in the main text. To
obtain the final temperatures under the assumption of
adiabaticity, we must calculate the total particle number
N and entropy S of the trapped system as a function of
temperature and find the temperature that matches these
to the initial conditions. In the LDA, the N and S are
then polylogarithms. Conditions (2) and (3) allow us to
asymptotically expand these for βµc ≫ 1 where µc is the
central chemical potential (these are generalizations of

the usual Sommerfeld expansion). Then one finds for the

trapped lattice system S = N logN+ πT
8
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FIG. 2: Final temperature T/U after adiabatically loading a
weakly interacting trapped gas at temperature Ti/ω for N =
2, 4, 6 in the atomic limit t/U = 0 (solid line) and in the no-
multiple-occupancy, t ≪ T ≪ U limit specified in this section
(dashed line). The parameters are the same as for Fig. 2 of
the main text.

O(T 2). Matching S and N to the initial entropy and par-
ticle number of the weakly interacting gas (with formulas
given in the main text) yields the final temperature Tf

in terms of the initial gas temperature Ti. We find

Tf ≈ aN2/3Ti

ω
− b logN (1)

with

a = XN 1/3π2 (2)

and

b = X61/3N 2/3, (3)

where X = 61/3ma2ω2

π5/3(5π−1)
.

Fig. 2 compares the results of the calculation in this
limit of the high-temperature expansion with the full
high-temperature expansion shown in the text. For tem-
peratures T/U ∼

< 0.1, the approximation is quite good in
this situation, and it captures the qualitative physics to
temperatures of T/U ≈ 0.2 or higher.
This approach captures, for small Ti/ω, the decreasing

of Tf with increasing N : here the second term dominates
and the horizontal intercept of the Tf curve decreases
due to the logN factor. It also explains the reversal of
this trend at higher temperatures discussed previously
in the Supplementary Information: here the first term
dominates and Tf increases as N2/3.


