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On-site correlations in optical lattices: Band mixing to coupled quantum Hall puddles
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We extend the standard Bose-Hubbard model to capture arbitrarily strong on-site correlations. In addition to
being important for quantitatively modeling experiments, for example, with rubidium atoms, these correlations
must be included to describe more exotic situations. Two such examples are when the interactions are made large
via a Feshbach resonance and when each site rotates rapidly, making a coupled array of quantum Hall puddles.
Remarkably, even the mean field approximation to our model includes all on-site correlations. We describe how
these on-site correlations manifest themselves in the system’s global properties: modifying the phase diagram
and depleting the condensate.
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Optical lattice systems, where a dilute atomic gas is trapped
in a periodic potential formed by interfering laser beams,
provide a close connection between solid-state systems and
atomic physics [1]. The models used to describe these systems
generally assume that each lattice site’s wave function is easily
built up from single-particle states [2]. Here we argue that this
approximation is inappropriate for quantitatively modeling
current experiments and sometimes fails more drastically,
for example, for resonant bosons. We show how to include
arbitrary on-site correlations via a generalized Hubbard model,
which can be approached by standard methods. By construc-
tion, the mean-field approximation to our model captures all
on-site correlations, contrasting with prior approaches [3–8].

Our method’s key idea is to first consider deep lattices,
where lattice sites are isolated, and then solve the few-body
problem on each site. Next, truncating to this few-body
problem’s low energy manifold, we calculate how tunnel-
ing couples the few-body states on neighboring sites. The
resulting theory resembles a Hubbard model, but with number-
dependent hopping and interaction parameters. We show that
the corrections to the ordinary Bose-Hubbard model captured
by this theory are crucial for quantitatively describing current
rubidium experiments. They become even more important
when the three-dimensional (3D) scattering length a becomes
a significant fraction of the size of the Wannier states �, such
as in recent experiments on cesium atoms near a Feshbach
resonance [9]. This approach is also essential for describing
more exotic on-site correlations; as one example, one can rotate
each lattice site, creating a lattice of coupled “quantum Hall
puddles” [10,11]. Related ideas can be applied to double-well
lattices and coupled “plaquettes” of four sites [12,13]. We
explore the impact of the on-site physics on the extended
system’s phase diagram.

Our approach is most simply illustrated by a single-
component Bose gas in a cubic sinusoidal lattice potential
Vp(x, y, z) = V0

∑
η=x,y,z sin2(πη/d) with the Hamiltonian

Hf =
∫

d3r

{
ψ†(r)

[
− h̄2

2m
∇2 − µ + Vp(r)

]
ψ(r)

+ 2πh̄2a

m
ψ†(r)ψ†(r)ψ(r)ψ(r)

}
, (1)
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where m is the particle mass, µ is the chemical potential,
and ψ and ψ† are bosonic annihilation and creation operators,
respectively. Adding an additional trapping potential presents
no additional difficulties.

Constructing the effective Hamiltonian. For each isolated
site, we proceed to build up the many-body states from the
solution of the n-body problem at site j : 〈r1, . . . , rn||n〉j =
ψn(r1 − Rj, . . . , rn − Rj), which obeys Hj |n〉j = εn|n〉j ,
where Hj is the same as Eq. (1)’s Hf , except replacing
the periodic potential Vp there with an on-site potential Vj .
A convenient approximation is to take Vj (r) = (mω2/2)(r −
Rj)2, with ω = 2

√
V0ER/h̄, the harmonic approximation to the

site located at Rj. For each site filling n, we restrict our on-site
basis to the lowest-energy n-body state; however, including
a finite number of excited states is straightforward. Note that
even in the noninteracting case these states are not Wannier
states. The principle difference is that states defined in this way
are nonorthogonal. From these, however, one can construct a
new set of orthogonal states |n〉j , which hold similar physical
meaning. In the noninteracting limit, the |n〉j approximate the
Wannier states.

Because the single-site wave functions decay like
Gaussians, it typically suffices to build up the effective
Hamiltonian from neighboring sites. In particular,
consider two sites, L and R, and the space
spanned by |nL, nR〉 = |nL〉L ⊗ |nR〉R, with overlaps
S(mn) = 〈m, n| |m + 1, n − 1〉. To lowest order in the
overlaps, we can define orthogonal |nL, nR〉 by taking
|nL, nR〉 = |nL, nR〉 − (1/2)[S(nR,nL)|nR + 1, nL − 1〉+S(nL,nR)

|nR − 1, nL + 1〉].
Within this restricted basis, the effective Hamiltonian for

these two sites is Heff = ∑
n,m,n′,m′ |n′,m′〉〈n′,m′|Hf |n,m〉

〈n,m|. Evaluation to lowest order in S(mn) yields on-site
energy terms

∑
n,m(En + Em)|n,m〉〈n,m| and a “hopping”

term −∑
nm t (mn)|m + 1, n − 1〉〈m, n| + H.c., with

En = 〈n|Hf |n〉,
(2)

t (mn) = −〈m + 1, n − 1|Hf |m, n〉 + S(mn)

2
(Em+En).

Additionally, there is an interaction term U = ∑
nm[U (n)

LL +
U

(m)
RR + U

(n,m)
LR ]|m, n〉〈m, n|, with U

(m)
LL = U

(m)
RR = Em and

U
(n,m)
LR = 〈m, n|Hf |m, n〉 − Em − En (3)
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FIG. 1. (Color online) (a) On-site energy with noninteracting en-
ergies subtracted off, In = En − (3h̄ω/2 − µ)n, and energies scaled
by ER = h̄2π 2/(2md2), using typical 87Rb parameters: lattice spacing
d = 532 nm, scattering length a = 5.32 nm. Dashed curve, neglecting
on-site correlations; solid curves, including correlations. Bottom to
top curves: n = 2, 3, 4, 5, respectively. (b) Representative hopping
matrix elements with on-site correlations, relative to those neglecting
on-site correlations, τ (mn) ≡ t (mn)/[t

√
(m + 1)n], as a function of

lattice depth V0 on a scale. Bottom to top lines: t (03), t (31), t (05), t (35),
respectively. (c) For comparison, t (01)/ER calculated from the exact
Wannier states (top curve) along with our Gaussian approximation to
it with and without nonorthogonality corrections (second- and third-
highest curves, respectively). Also shown is the next-nearest-neighbor
hopping matrix element (bottom curve). The effective Hamiltonian
parameters are calculated perturbatively in a/d for a Gaussian ansatz.

to O(S2), consistent with the rest of our calculations. In the
remainder of this article we will neglect the off-site interaction,
Eq. (3), and the last term in Eq. (2). The former is rigorously
justified as it falls off exponentially faster than the other
interaction terms. Formally, the nonorthogonality contribution
to Eq. (2) is suppressed only by a factor of (V0/ER)1/4, with
ER = h̄2π2/(2md2), but as shown in Fig. 1, it is typically
small.

The simplest many-site Hamiltonian which reduces to this
one in the limit of two sites is

H = −
∑

〈i,j〉;m,n

t
(mn)
ij |m + 1〉i |n − 1〉j 〈m|i〈n|j

+
∑
i,n

En|n〉i〈n|i , (4)

where
∑

〈i,j〉 indicates a sum over nearest neighbors i and
j . At higher order, one generates more terms such as next-
nearest-neighbor hoppings, pair hoppings, and longer-range
interactions.

Calculating the Hamiltonian parameters. Here we consider
the cases of weak interactions, resonant interactions, and
coupled quantum Hall puddles.

In the limit of weak interactions, one can estimate
the parameters in Eq. (4) by taking the on-site
wave function to be ψn ∝ exp(−∑n

j=1 r2
j /2σ 2

n ),
with variational width σn. To leading order in
a/d we find En = ER{(3√

V0/ER − µ/ER)n +
(U/2)n(n − 1)[1 − 3π

4
√

2π
(a/d)(n − 1)(V0/ER)1/4]} with

U = (a/d)
√

2π (V0/ER)3/4 and t (mn) = t
√

n(m + 1)[1 +√
2aπ5/2

4d
(m + n − 1)(V0/ER)3/4], with t = V0(π2/4 −

1)e−(π2/4)
√

V0/ER . Note that, as expected, interaction spreads
out the Wannier functions, increasing the t (mn)’s and
decreasing the En’s. Figure 1 shows several of the resulting
t (mn)’s as a function of V0 for parameters in typical optical
lattice experiments with 87Rb. Also shown are t (01) and
the next-nearest-neighbor hopping, tnnn, calculated from

the exact Wannier states. Our estimates are consistent with
previous work regarding t’s n dependence [3–5], validating
our approach. As can be seen in Fig. 1(c), the relative size
of the next-nearest-neighbor hopping tnnn/t is 10% (1%)
for V0 = 3ER (V0 = 10ER), justifying our approximation
of including only nearest-neighbor overlaps to describe the
system near the Mott state. Figure 1 also illustrates that
the Gaussian approximation only qualitatively captures the
behavior even for noninteracting particles. We also see that
even for this weakly interacting case the number dependence
of t is crucial for a quantitative description of the experiments.
Similarly, the number dependence of the on-site interaction is
quantitatively significant. This latter deficiency of the standard
Hubbard model has been noted in the past, for example, by
the MIT experimental group [14].

For more general experimental systems, one needs to
include still more on-site correlations. As our first example,
we consider lattice bosons near a Feshbach resonance [15,16],
describing, for example, ongoing cesium atom experiments
[9]. We restrict ourselves to site occupations n = 0, 1, 2, for
which we have exact analytic solutions to the on-site problem
for arbitrary a in terms of confluent hypergeometric functions
[17]. Figure 2 shows graphs of En and t (mn) rescaled by h̄ω as
a function of a in the deep lattice limit.

As Fig. 2(b) illustrates dramatically, the hopping from
and to doubly occupied sites is strongly suppressed near the
Feshbach resonance when atoms occupy the lowest branch
and is enhanced for the next-lowest branch. The former has
implications for studies of boson pairing on a lattice [15,16],
showing that one must dramatically modify previous models
near resonance, and, as will be discussed more later in this
article, the latter implies a substantial reduction of the n =
2 Mott lobe’s size for repulsive bosons.

We give one further example, namely the case, similar
to the one discussed in [10,11], where the individual sites
of the optical lattice are elliptically deformed and rotated about
their center. This is accomplished by rapidly modulating the
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FIG. 2. (Color online) (a) On-site two-particle energy as a func-
tion of scattering length a rescaled by the on-site harmonic oscillator
energy h̄ω = 2

√
V0ER, for the two lowest-energy branches. The

corresponding characteristic length is � = √
h̄/mω. (b) Log plot of

rescaled hopping matrix elements τ (mn) ≡ t (mn)/[t
√

(m + 1)n]. Solid
and dashed curves are t (11)/(

√
2t) and t (12)/(2t), respectively. We have

chosen the lattice depth V0 = 15ER; this affects only the horizontal
scale. In the ordinary Bose-Hubbard model, t (mn)/[

√
(m + 1)nt] = 1

for all m, n, as confirmed by this figure’s a = 0− (lower, red) branch
and a = 0+ (upper, blue) branch limits. The resonance at −d/a = 0
separates the molecular side (a) from the atomic side (b). Note
that t (10)/t (not shown) is universally equal to unity regardless of
interaction strength, since interatomic correlations are absent when
there is a single particle per site.
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phase of the optical lattice lasers to generate an appropriate
time-averaged optical potential. At an appropriate rotation
speed 	 the lowest-energy n-particle state on each site is
a ν = 2 Laughlin state ψn(r1, . . . , rn) = Nn[

∏n
i<j=1(wi −

wj )2]e− ∑
j |wj |2/(4�2), where we define wj ≡ xj + iyj , and Nn

is a normalization factor with phase chosen to gauge away
phase factors appearing in t (mn). Truncating to this set of
states for n = 0, 1, 2, we produce an effective Hubbard model
of the same form as Eq. (4). The hopping parameters for
asymptotically deep lattices V0/ER 	 1 are t (01) = t , t (02) =
t(π2/32)(V0/ER)1/2, and t (12) = t(π4/1024)(V0/ER), where
ER = h̄2π2/(2md2) is the recoil energy, and t is the same as
in the weakly interacting case treated earlier in this article;
the interaction parameters are Em = ω−	

2 m(m − 1) − µm.

One particularly interesting aspect of this model of coupled
quantum Hall puddles is that when the system is superfluid,
the order parameter is exactly the quantity defined by Girvin
and MacDonald [18,19] to describe the nonlocal order of a
fractional quantum Hall state. Thus, when one probes the
superfluid phase stiffness, one directly couples to this quantity.

Mean-field theory. The true strength of our approach is
that the resulting generalized Hubbard model is amenable
to all of the analysis used to study the standard Bose-
Hubbard model. In particular, we can gain insight from a
Gutzwiller mean-field theory (GMFT) [2,20]. This approxi-
mation to the ordinary Bose-Hubbard model gives moderate
quantitative agreement with more sophisticated methods: For
example, the unity site filling MI-SF transition on a 3D
cubic lattice occurs at (t/U )c = 0.03408(2), while GMFT
yields (t/U )c = 0.029 [21].

In the ground state |�〉, we introduce mean fields ξm ≡
〈�|m + 1〉〈m|�〉. Neglecting terms which are quadratic
in δLi

m = |i, m + 1〉〈i, m| − ξm, the Hamiltonian is HMF =∑
i HMF,i, with

HMF,i = Eni
|n〉i〈n|i − z

∑
m

[ζm|m − 1〉i〈m|i

− ζmξm−1 + H.c.], (5)

where H.c. denotes Hermitian conjugate, z is the lattice
coordination number, and ζn = ∑

m ξmt (mn).
Truncating the number of atoms on a site to n � nmax, we

self-consistently solve Eq. (5) by an iterative method. We start
with trial mean fields, calculate the lowest-energy eigenvector
of the (nmax + 1) × (nmax + 1) mean-field Hamiltonian matrix,
then update the mean fields. We find that it typically suffices
to take nmax roughly three times the mean occupation of the
sites. Figure 3 illustrates how the density dependence of
the parameters introduced by the on-site correlations modify
the GMFT phase diagram—particularly the phase boundary’s
shape and the density and order parameter in the superfluid
phase.

As one would expect, the topology of the MI-SF phase
boundaries are similar to that of the standard Bose-Hubbard
model, but the Mott lobes’ shapes can be significantly
distorted. Within mean-field theory the boundary’s shape
can be determined analytically by taking |�〉 = ε′|n − 1〉 +√

1 − ε′2 − ε2fn−1|n〉 + ε|n + 1〉 and expanding 〈�|HMF|�〉
to quadratic order in ε and ε′. The Mott boundary corresponds
to when the energy expectation value’s Hessian changes sign;

µ
e
ff

teff teff
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(c)

(d)

FIG. 3. (Color online) Representative Gutzwiller mean-field the-
ory phase diagrams, showing constant density (black, roughly
horizontal) and constant ξ ≡ ζ1 + ζ2 + ζ3 (red, roughly vertical)
contours. ξ , similar to the condensate density, is a combination
of the mean fields ζm, defined after Eq. (5). Density contours
are n = {0.01, 0.2, 0.5, 0.8, 0.99, 1.01, 1.2, . . .} and order-parameter
contours are ξ = {0.2, 0.4, . . .}, except in (d), where we take contours
ξ = {0.02, 0.04, . . .}. The phase diagrams are functions of µeff ≡
µ/ER and teff ≡ exp(−√

V0/ER), where the lattice depth V0 is the
natural experimental control parameter. We plot versus teff , instead
of V0, as this is closer to the Hamiltonian matrix elements and
more analogous to traditional visualizations of the Bose-Hubbard
phase diagram. (a) Ordinary Bose-Hubbard model for a = 0.01d ,
(b) lattice bosons restricted to fillings n = 0, 1, 2 with a = 0.01d ,
on the next-to-lowest energy branch on the a > 0 side of resonance,
(c) lattice boson model with a = d , and (d) fractional quantum Hall
puddle array model, taking ω − 	 = 0.1ER (see text for details).
Panels (b) and (c) use the Hamiltonian parameters from the exact
two-particle harmonic well solution.

this boundary occurs when

[En+1 − En + 2zt (n,n+1)][En−1 − En + 2zt (n−1,n)]

= [zt (n,n)]2. (6)

The five scaled parameters

µ̄ ≡ En − En−1

En

, xU ≡ En+1 + En−1 − 2En

En

,

(7)

t̄ ≡ t (n,n)

En

, t+ ≡ t (n,n+1)

t (n,n)
, t− ≡ t (n−1,n)

t (n,n)
,

)b()a(
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FIG. 4. Single lobe of the Mott-insulator–superfluid boundary.
Complete characterization of the mean-field lobe shape in the zt̄-µ̄
plane for all possible t±’s [see Eq. (7) for definitions]. (a) Fix t− =
0.5, vary t+ from 1 (outer curve) to 21 (inner curve) in steps of 2.
(b) Fix t+ = 1.5, vary t− from 0 (outer curve) to 1 (inner curve) in
steps of 0.15.
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completely characterize the shape of a filling-n Mott-phase
boundary. Varying t̄ and µ̄ while fixing the other parameters
then maps out a Mott-lobe-like feature in the t̄ and µ̄ plane, as
illustrated in Fig. 4.

Summary and discussion. We have demonstrated an
alternative approach to strongly correlated lattice boson
problems. One constructs a model by truncating the on-
site Hilbert space to a single state for each site filling
n and includes only nearest-site, single-particle hoppings.
While this approximation captures many multiband effects,
it is not a multiband Hubbard model and in particular
retains the ordinary Bose-Hubbard model’s simplicity. In
this method, arbitrary on-site correlations may be treated,
even in the mean-field theory, and consequently it captures
the condensate depletion, modified excitation spectra, altered
condensate wave unction, and altered equation of state

characteristic of strongly interacting bosons. We have calcu-
lated the mean-field Mott-insulator–superfluid phase bound-
ary analytically and observables across the phase diagram
numerically.

Finally, although we have truncated to a single many-
body state for each filling n, no difficulty arises from
including on-site many-body excitations in the Hamiltonian.
These are especially important, for example, for double-
well lattices and spinor bosons. The ideas also extend
straightforwardly to fermions; see Refs. [22–26] for related
considerations.

This material is based on work supported by the National
Science Foundation through Grant No. PHY-0758104. We
thank Stefan Baur, John Shumway, and Mukund Vengalattore
for useful conversations.
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