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Figure 1: Si system with a tri-interstitial defect (dataset I1) (a) Lattice with bulk and defect (b) Salient Iso-surface with ability to distinguish
between bulk and defect (c) An arbitrary slice of electron density data showing the shape of defect.

ABSTRACT

In this article we explore techniques to detect and visualize features
in data from molecular dynamics (MD) simulations. Although the
techniques proposed are general, we focus on silicon (Si) atomic
systems. The first set of methods use 3D location of atoms. Defects
are detected and categorized using local operators and statistical
modeling. Our second set of exploratory techniques employ elec-
tron density data. This data is visualized to glean the defects. We
describe techniques to automatically detect the salient iso-values for
iso-surface extraction and designing transfer functions.We compare
and contrast the results obtained from both sources of data. Essen-
tially, we find that the methods of defect (feature) detection are at
least as robust as those based on the exploration of electron density
for Si systems.
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1 INTRODUCTION

Scientific data analysis ranges from analyzing biological data to
analyzing geophysical datasets, from analyzing fluid flows to an-
alyzing astrophysical observations. Direct numerical simulations
are also being increasingly used to generate the datasets. These
datasets are analyzed to understand the domain. In this article we
focus our attention to datasets produced by Molecular Dynamics
(MD) simulations. We seek to understand defect dynamics in Si
lattices. In semi-conductor devices, defects can alter electrical and
material properties of the device dramatically. In laser diodes, for
example, defects can lead to dark currents which reduce device effi-
ciency and can even cause device failure. Knowledge of defects and
their impact is also extremely important in device fabrication. In the
front-end processing, extended defects dissolve to create small in-
terstitial defect clusters, which enhance the diffusion of dopant such
as boron by three orders of magnitude (not a desirable effect). Thus,
presence of defects is one of the limiting factors in device fabrica-
tion. Therefore, to precisely control the distribution of a dopant it
is important to understand of the extent and evolution of interstitial
defects clusters.

Datasets produced by MD simulations are often very large which
impedes easy understanding. Systematic study of defects can pro-
duce a huge amount of data. In typical silicon defect simulations,
more than 120 million time steps are generated to study the evo-
lution of single- or di-interstitial defects in a lattice [8]. Manual
analysis to seek point defects is cumbersome and error-prone. The
other factor which limits human capabilities to deduce useful in-
formation is the presence of thermal noise and the resulting uncer-
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tainty. Uncertainty is inherent in almost all MD simulations data
given round-off and associated measurement errors. This is espe-
cially true of methods which estimate locations of atoms in a defect
ensemble.

Retrieving useful information and drawing conclusions from
such a large scale simulation requires efficient and reliable feature
mining methods to search and verify defects generated in the sim-
ulation. We describe some of those methods in this paper. These
feature mining techniques can not only uncover fundamental defect
nucleation and growth processes but also provide essential param-
eters towards the modeling of macroscopic properties of materi-
als. This need is well recognized in the semiconductor industry as
evinced in its silicon road map that identifies the short- and long-
range problems necessary to continually pack more transistors on a
chip.

In this article we present two techniques to explore features in
Si lattices. The features we are interested are defects. The data we
examine is derived from a single simulation exercise based on ab-
initio calculations for various systems. The data is composed of two
parts namely i) the spatial location of atoms and ii) electron density
in regularly partitioned lattices. We deploy two sets of methods
to gain understanding about the inherent defects in the Si systems
under scrutiny.

The first method relies on the domain knowledge and statistical
modeling to locate atoms which constitute the defects. Local oper-
ators are proposed after analyzing distribution of bond angles and
bond lengths. These measurements are replete with uncertainty.
Hence, there is a need to verify or validate the results. Often physi-
cists use only the density data to visualize the atoms and anomalies
in the bulk. Whereas, in reality they really need the location and
the configuration of atoms. The premise of this paper is therefore to
demonstrate the utility of visualization techniques in validating the
feature detection exercise. However as we shall soon show, visual-
ization without suitable analytic tools will not suffice. We describe
appropriate analysis of data to glean useful information. We expect
to see the defect in same spatial position using both techniques.
Essentially we wish to gain confidence in the feature detection ex-
ercise and hence resort to visualizing the results. Figure 1 shows
the lattice, iso-surface and slicing results. We explain these images
later in the article.

The contributions of this application case study are the follow-
ing:

1. Detection of defects based on domain knowledge and sta-
tistical modeling.

2. Use of visualization tools for verification of defect detec-
tion process.

3. Determination of salient iso-values that best describe the
defect.

We use three datasets depicting the presence of three distinct de-
fects. Each dataset has a 67-atom lattice configuration. The lattice
is partitioned in a 112×112×112 regular grid. Electron density is
calculated at each grid point using the Vienna Ab-intio Simulation
Package (VASP) suite [12]. The first and second dataset each
have a single tri-interstitial defect, we refer to them as I1 and I2
respectively. The defects in each of the two datasets are of differ-
ent types and possess very different shapes. On the other hand, the
third dataset, D1, includes two distinct defect structures.

The paper is structured as follows. Related work is discussed
in Section 2. Section 3 provides an overview of MD simulations,
while Section 4 explains the generation of above mentioned local
operators. Visualization techniques developed for MD simulations
are described in Section 5. Finally, in Section 6 we summarize our
findings and describe our plans for the future.

2 PREVIOUS WORK

Traditionally, physicists have used ground state energy and electro-
static potential to find defects in a lattice. In [6, 18] ab-initio meth-
ods were used to locate interstitial defects in a silicon lattice. These
methods exploit anomalies in the energy/potential fields available
at all points in the lattice. The calculation and analysis of elec-
trostatic energies and potential is very time consuming. The most
relevant work is embodied in an approach called common neigh-
bor analysis(CNA) [5, 10]. CNA strives to glean the crystallization
structures in lattices. As the name CNA implies, the method takes
into account the number of neighbors of each atom and analyzes the
field data. However, the effectiveness of this approach is limited by
the fact that number of neighbors alone cannot capture all (geo-
metrical) properties especially at high temperatures. Moreover, the
CNA approach does not account for noise effects in such data. In
[14, 15], we presented a framework for detection and classification
of features in data from fluid and MD simulations. The framework
emphasizes on the use of shape and structure of the features (de-
fects) for classification and tracking.

Visualization techniques have relied on generating video clips
that depict the animated movement of atoms in a given system. In
[3] a MPEG-based method was proposed to visualize and generate
the animations for MD simulations. Recently, new techniques that
do not necessarily rely on animation alone have been proposed to
visualize the 3D atomic data. Varshney and his associates were one
of the first to exploit visualization techniques [1, 2] towards un-
derstanding the structure and form of molecular structures. Smooth
surfaces representing force fields were computed and visualized us-
ing contouring methods. On the other hand, Levoy proposed the use
of special transfer functions to volume render molecular ensembles
[13]. Other efforts have targeted specific atomic and molecular sys-
tems. In [17] a method was proposed to visualize biochemical
data. Additionally, several software application toolkits also have
been offered for use by researchers. Visual Molecular Dynamics
(VMD) [9, 16]1 is one such software package that allows the ma-
nipulation and visualization of atoms in real time. However, visu-
alization alone can not uncover important features. Hence, there is
a strong need to couple visualization techniques with data analysis.
In [4] statistical analysis of data was conducted to glean various
sub-structures. Our work reported here is similar in essence.

3 BACKGROUND

The key complexity of real materials for commercial applications is
not that they are defected in the trivial sense of being imperfect or
impure, but rather that their material properties depend critically on
their nonideality. As an example, the enhanced diffusion of dopants
in the presence of extended {311} defects2 in silicon is a limiting
factor in the fabrication of shallow junction devices [7]. Our ob-
jective is to mine such datasets to aid in the discovery of rules that
govern nucleation and defect growth. To do so we must effectively
detect and visualize defects. We now define some relevant aspects
of MD simulations.

Lattice: A lattice is an arrangement of points or particles or
objects in a regular periodic pattern in 3 dimensions. Consider
the simple silicon lattice in Figure 2a. The “atoms”, are denoted
by circles, stabilized by “bonds” denoted by cylinders connecting
the atoms. The bonds strive to preserve both the lattice spacing of
2.36Å between atoms and the dihedral angles of 109.28◦ It should
be noted that only a portion of the “infinite” lattice is shown. A
perfect or ideal lattice is composed of only “bulk” atoms.

1http://www.ks.uiuc.edu/Research/vmd/
2Point defect which evolves to extend through the lattice.
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(a) (b)

Figure 2: (a) Original lattice with repeating structure marked (b)
Lattice with one tri-interstitial defect

Repeating Structure: A repeating structure is set of atoms
which are repeated in preferred directions to form the bulk lattice.
This structure for Si system is composed of 5 atoms organized as a
tetrahedron, with 4 atoms connected to a single central atom with
bond length of 2.36Å and dihedral angle of 109.28◦. Figure 2a
shows a bulk lattice with a specific repeating structure shaded dif-
ferently.

Defect: Consider adding a single atom to the lattice. The
bonds between the extra atom and other atoms strive to satisfy the
lattice parameters as described above. Figure 2b shows one such
lattice with one extra atom. Note that the dark shaded atoms do not
follow the regular tetrahedral structure. While this defect no longer
has the symmetry of the original simple square lattice, we can upon
visual inspection of, recognize the atoms that seem to be displaced
as “defect” atoms.

Multi-defects lattice: Real challenges arise with multiple
defects in a lattice that can then form even more extended defects.
Consider for simplicity two extra interstitial defects added to the
crystal that form disconnected defects. Figure 3 illustrates two pos-
sible defects: in the lower left and upper right corners respectively
of a 512-atom lattice. The different shades again represent separate
and distinct defects.

Electron Density: The location of an electron is not fixed, but
is instead described by a probability density function. The sum of
the probability densities of all the electrons in a region is the elec-
tron density in that region. The density function describes the prob-
ability of finding an electron around nucleus. This data is generated
by using Vienna Ab-intio Simulation Package (VASP) [11, 12] 3.
VASP is a package for performing ab-initio quantum-mechanical
molecular dynamics (MD) through the solution of integral equa-
tions. The lattice is partitioned into a regular grid and electron den-
sity is calculated at each grid point.

4 DEFECT DETECTION USING LOCAL OPERATORS

In this section we describe defect detection based upon statistical
modeling. The idea is intuitive and simple: first identify the bulk
atoms; the rest are defect atoms. Identification of bulk atom can be
done by checking the bond lengths and bond angles it forms with
other atoms. From existing literature in material sciences, it is easy
to obtain these rules. These rules will work in the case of noise-
free lattices. However this is not the case when simulations are
conducted at higher temperatures. Next we describe the methods to
model the noise in discovery of rules.

3http://cms.mpi.univie.ac.at/vasp

Figure 3: Two separate defects in same lattice

As noted above, these precise rules cannot be directly used for
formulating rules to define the defect given the noise. To glean the
rules, we generate a histogram of the bond angles and bond lengths
of several silicon lattices. As shown in Figure 4, the distribution fol-
lows the Normal with mean values very close to the ideal values of
bond angle and length as listed in Section 3. Since the defect atoms
are relatively rare, we can consider them to be outliers. A simple
method for detecting outliers within a normal distribution is to use
the 95% two-sided confidence interval of the distribution. Under
the Normal distribution, 95% of data lies between ±2σ , therefore
we obtain the following two relaxed rules for silicon [14]:

1. R1: All bond angles with neighbors should lie in the interval
90◦−130◦.

2. R2: Each atom should form exactly 4 bonds with a bond
length ≤ 2.6Å.

Unlike R1, rule R2 only imposes an upper bound because two
atoms cannot get much closer to each other due to the pres-
ence of electrostatic forces.

These rules are applied locally to each atom in every frame gen-
erated by the simulation data. All atoms which fails either one of
the rules is labeled a defect atom.

4.1 Segmentation of defects

The rules described above are local operators which only mark the
defect atoms. However since there can be several defects in a lat-
tice, an additional step is needed to group defect atoms in one or
more connected substructures (defects). Input to this stage is a list
of defect atoms along with their locations. We start with one atom
at random from this list and identify any neighbors to this atom
within a distance of εÅ from this atom. Each of these neighbors
repeatedly identifies its neighbors until there are no additions to
the connected substructure. This defect substructure and the list of
atoms it is composed of are deleted from the original list of atoms,
and is labeled a defect. If there are any more atoms in the original
list, this process is repeated until all defects are found.

We use the upper bound of Rule R2 for the value of the parameter
ε . The final result of this step does not depend on the choice of
the initial atom. Figure 3 shows two detected defects embedded in
512-atom lattice. The different shades again represent separate and
distinct defects. However there is a strong need to verify the results.
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Figure 4: (a) Distribution of bond length (b) Distribution of bond angles

5 DEFECT VERIFICATION USING VISUALIZATION

A simple visualization using standard iso-surface or transfer func-
tion techniques is not helpful without some knowledge of the prop-
erties of the system being visualized. Note the ambiguous results in
Figure 5. We use the standard linear ramp used as opacity transfer
function to render this volume. The position of the defect structure
cannot be easily ascertained by visually inspecting the image. How
does one pick an appropriate iso-value and an appropriate transfer
function? We can learn from the data and domain knowledge avail-
able to us to better understand the behavior of this scalar field We
plan to analyze the electron density to discover the meaningful iso-
value(s) and develop the transfer functions for better visualization.

Figure 5: Dataset I1 volume rendered using the common ramp Trans-
fer Function

Levoy [13] proposed the use of transfer functions that vary with
distance from the grid points. Let us first examine the variation of
electron density to see if there is any trend we can exploit. The elec-
tron density is maximum at the actual spatial position of atom and
decreases as we move away from the atom towards another atom.
At some point the density again starts to increase and reaches max-
imum at spatial location of other atom. This behavior is well exhib-
ited by any two bulk atoms. However, the electron density around
the defect atoms do not follow these rules. This anomalous behav-
ior can be explained considering the fact that density is not a local
property between two atoms. It is affected by the presence of neigh-

boring atoms. Since in a defect the positions of atoms do not follow
a regular geometry, the density function deviates from the normal
behavior. Figure 6a shows the change in density between two bulk
atoms and Figure 6b shows the behavior between defect atoms. One
can capture this variation of electron density by designing transfer
functions that change in both the data space and the embedded eu-
clidean space. However, we choose to use a simpler yet effective
method for this effort. Our intent is to provide simple yet effec-
tive tools that a physicist can use in a tangible manner. Therefore,
we choose to determine the salient iso-value that can discriminate
between defect and bulk. We now describe an analytic method to
detect the defect.

5.1 Iso-value Analysis

Iso-surfacing is a common technique to visualize the data. How-
ever the most difficult part is to find the correct iso-value so that
the transition point is well captured. The salient iso-value if de-
tected correctly should depict the defect. Once this iso-value is de-
termined, we can use it to extract significant iso-surfaces and even
use it for constructing transfer functions. Next we present a method
to automatically find the correct iso-value for this problem.

Since there are two surfaces namely bulk and defect present in
same volume, there should exist some scalar value where both the
surfaces can be seen. Our method tries to find that “special” value
by analyzing the distribution (histograms) of the electron density
scalar field. We divide the scalar field into N bins. The histogram
is first smoothed using an Gaussian kernel of appropriate width.
Figure 7(a) shows the original histogram, while Figure 7(b) shows
smoother version. The smoothed histogram SH is then transformed
into the frequency domain using the fast Fourier transform (FFT) to
obtain FH . Since we wish to retain the high frequency components
of the histogram, we construct the following exponential function
that serves well as a band-pass filter.

G(i) = exp(−2s2)/i2
where i ∈ [1 . . .N] and s is constant scaling factor in frequency

domain

FH is then convolved with G to obtain CH . This convolution am-
plifies the high frequency component. An inverse Fourier transform
is then applied to CH to obtained a highly enhanced histogram. Fig-
ure 7(c) shows the histogram after the inverse FFT.

One should notice the dramatic change in the shape of the his-
togram. We believe that the values of electron density in the bins
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spanning the large change include the salient iso-value. The bins se-
lected for inspection are those where the curvature of the histogram
is large. Finally, the values in the bins are averaged to get a single
iso-value.

Please note that the change occurs in bins 15 and 16 respectively
and that the average iso-value in these bins is around 450. Figure 9
shows the iso-surface for iso-values less than, equal to and greater
than the automatically determined iso-value. It is clear from the
rendered images for iso-values less than the salient iso-value that
the defect surfaces are hard to distinguish. Same is true for iso-
values greater than the transitioning salient iso-value. However, at
the thresholded salient iso-value the defect structure is well sepa-
rated and easily distinguishable.

5.2 Transfer Functions for Volume Rendering

We now use the derived iso-value to construct appropriate opac-
ity transfer functions. The intuition is that since at some particular
iso-value bulk and defect can be distinguished, all the points at that
iso-value should have highest opacity and other data values should
be assigned lower values of opacity. Therefore, in effect the opac-
ity should be highest at this iso-value and then gradually decrease.
The relevant question is “how should the opacity decrease in the
data space ?” While calculating the iso-value we average all scalar
values which lie in bins across which the transition takes place. We
assign the opacity for all other grid points to a small constant value.
For points corresponding to iso-values in these bins our transfer
function is a Gaussian with µ = iso-value and σ = standard devia-
tion of all scalar values in the bin spanning the transition. Figure 8a
shows the transfer function and Figure 8b shows the volume ren-
dered using the transfer function.

It should be noted that although we did not incorporate any
distance-based variation in the transfer functions, the resulting im-
ages are quite telling.

6 DISCUSSION

Figure 1a shows the detected defect in dataset I1. Figure 1b and
Figure 1c show the iso-surface at the salient iso-value and an ar-
bitrary slice for our dataset I1. Figure 8 shows the transfer func-
tion and volume rendered using that transfer function for the same
dataset. Figure 11 shows same three results for our second dataset
I2. Please note that the defect structure is split at boundary in I2.
Our approach handles the boundary by assuming that the lattice un-
der scrutiny extends periodically in the directions of the Principal
Cartesian axes.

Figure 10a shows the original dataset D1 lattice with defect
atoms marked. Figure 10b and Figure 10c depict the results from
slicing and volume rendering the dataset D1 respectively. The slice
shows only one defect, the other defect is visible at another slicing
angle. All these visualizations are conducted for electron density
data of the same lattice. The defects can be seen very easily in
volume rendering. Once again, the transfer function is constructed
based on the derived iso-value.

In all three datasets our local operators are able to correctly lo-
cate defects. Also multiple defects are correctly segmented. Note
the shape of the defects. The shape of the detected defects is very
similar to the shapes gleaned from images obtained from a slicing
operation and volume rendering . The similarity is extremely high
for our first dataset(Figure 1). The defect in our first dataset is very
compact and well connected and hence the closeness of the two re-
sults. In the other two cases, the defects are larger. However, the
shape is well captured by all methods of visualization. Further, the
defects are also located at the same spatial locations.

These observations validate our premise that our segmentation
approach marks the correct atoms as defects. The MD simulation

data offers many advantages to both the physicist and the visual-
ization professional. Local operators are easy to apply and further
the time and space-complexity of the necessary operations is small.
Consider this - a lattice has 67 atoms with each atom represented
by x, y and z coordinates. Thus, there exists 67×3 floating points.
However, for the electron density data the size of a collection mea-
sures to 112×112×112 floats. Also, local operators directly pro-
vide the defect atoms and not an image. Other data sources require
pre-processing (e.g., finding iso-values or the correct slice orienta-
tion). However, these techniques provide a solid and reliable way
for verifying our approach.

For the future we will consider larger Si systems. Moreover, we
plan to study evolution of defects in titanium alloy systems. The
unit cell is dramatically different and new defect rules have to be
discovered. Additionally, we plan to further investigate the design
of transfer functions that vary with distance.
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Figure 6: (a) Density behavior between two bulk atoms - First atom is at 0 and second atom is at 10,000 (b) Density behavior between two
defect atoms

(a) (b) (c)

Figure 7: (a) Original Distribution (b) Smoothed Distribution (c) Band Pass Distribution

(a) (b)

Figure 8: Dataset I1 (a) Transfer Function derived using iso-value (b) Volume Rendered Image using the transfer function

470
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Figure 9: Dataset I1 (a) iso-surface before the transition point (b) At the transition point (c) After the transition Point

(a) (b) (c)

Figure 10: Dataset D1 (a) Original Marked Lattice with two defects (b) Slicing showing shape of one defect (c) Volume rendering showing both
defects.

(a) (b) (c)

Figure 11: Dataset I2 (a) Original marked lattice (b) Slicing (c) Volume rendering
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